Methods and Tools for Management Information Systems

Lecture 4

30. November 2009
Resource Description Framework (RDF)

- Language for representing information about resources in the World Wide Web, particularly intended for representing metadata about Web resources
- RDF uses a more general notion of Web resources—not only things that can be retrieved on the Web but also things that can be identified on the Web via its URI
- Resources are described in terms of properties and property values
- RDF provides a common framework for expressing information that can be processed/exchanged by/between applications.

- RDF defines the fundamental vocabulary to formulate arbitrary statements about resources.

- Most important application is the Semantic Web which extends the existing Web by machine-processable content/metadata.

- RDF specification consists of two parts:
 - *RDF Graph* represents the fundamental data model.
 - *RDF/XML* provides the XML syntax to serialize those data.
RDF Graph:

- Information is kept in form of *statements*, triples of **subject**, **predicate** and **object**, identified by URI references (URIrefs)
- Objects may also be constant values represented by text strings (so-called *literals*)
- URIrefs are represented as ellipses, literals as boxes
- Tripels are connected in form of a labeled directed graph where nodes refer to subjects and objects, and arcs (directed from the subject node to the object node) to predicates
- Predicates themselves may also be resources and, as such, the subject of other statements (which can be used in other vocabularies, i.e., sets of URIrefs defined for a certain purpose)
Example:
There is a Person identified by
http://www.w3.org/People/EM/contact#me, whose name is Eric Miller, whose email address is em@w3.org, and whose title is Dr.
Serialization in RDF/XML:

```xml
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">
    <contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
        <contact:fullName>Eric Miller</contact:fullName>
        <contact:mailbox rdf:resource="mailto:em@w3.org"/>
        <contact:personalTitle>Dr.</contact:personalTitle>
    </contact:Person>
</rdf:RDF>
```
Fragment of
http://www.w3.org/1999/02/22-rdf-syntax-ns#type:

```xml
<rdf:Property
    rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#type">
    <rdfs:isDefinedBy
        rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>
    <rdfs:label>type</rdfs:label>
    <rdfs:comment>
        The subject is an instance of a class.
    </rdfs:comment>
    <rdfs:range
        rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
    <rdfs:domain
        rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
</rdf:Property>
```
Structured properties and blank nodes:

http://www.example.org/staffid/85740

http://www.example.org/terms/address

1501 Grant Avenue, Bedford, Massachusetts 01730
Triples notation:

```
exaddressid:85740  exterms:street  "1501 Grant Avenue" .
exaddressid:85740  exterms:city  "Bedford" .
exaddressid:85740  exterms:state  "Massachusetts" .
```
Representation in triples notation using *Blank Node Identifiers*:

```
exstaff:85740 exterms:address _:johnaddress .
_:johnaddress exterms:street "1501 Grant Avenue" .
_:johnaddress exterms:city "Bedford" .
_:johnaddress exterms:state "Massachusetts" .
_:johnaddress exterms:postalCode "01730" .
```

- Blank nodes ...
 ⇒ may not represent predicates
 ⇒ can illustrate certain relationships more precisely
Typed literals:

- http://www.example.org/staffid/85740
- "27"^^<http://www.w3.org/2001/XMLSchema#integer>
- http://www.example.org/terms/age

Triples notation:

General rules:
⇒ resources without URI (e.g. blank nodes) cannot be referenced
⇒ RDF can only represent binary relationships
⇒ type safety accomplishable by *typed literals*
XML Syntax for RDF: RDF/XML

Serialization of RDF data in XML (*normativ*):

http://www.example.org/index.html

http://www.example.org/terms/creation-date

August 16, 1999
XML Syntax for RDF: RDF/XML

Serialization of RDF data in XML (*normativ*):

```
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
         xmlns:exterms="http://www.example.org/terms/">

  <rdf:Description rdf:about="http://www.example.org/index.html">
    <exterms:creation-date>August 16, 1999</exterms:creation-date>
  </rdf:Description>

</rdf:RDF>
```
Basic idea of RDF/XML: encode an RDF graph as XML elements, attributes, element content, and attribute values

- URIrefs of predicates (as well as some nodes) are written as XML QNames, i.e., consisting of a prefix denoting a namespace URI and a local name

- URIrefs of subject nodes (as well as some object nodes) are written as XML attribute values

- Literal nodes (which are always object nodes) become element text content or attribute values
An RDF graph consisting of multiple statements can be represented using multiple description elements:

```xml
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:exterms="http://www.example.org/terms/">

    <rdf:Description rdf:about="http://www.example.org/index.html">
        <exterms:creation-date>August 16, 1999</exterms:creation-date>
    </rdf:Description>

    <rdf:Description rdf:about="http://www.example.org/index.html">
        <dc:language>en</dc:language>
    </rdf:Description>

</rdf:RDF>
```
A description element may also contain multiple predicates:

```xml
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:exterms="http://www.example.org/terms/">

    <rdf:Description rdf:about="http://www.example.org/index.html">
        <exterms:creation-date>August 16, 1999</exterms:creation-date>
        <dc:language>en</dc:language>
        <dc:creator
            rdf:resource="http://www.example.org/staffid/85740"/>
    </rdf:Description>

</rdf:RDF>
```
Serialization of blank nodes using node identifiers:

```xml
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
       xmlns:dc="http://purl.org/dc/elements/1.1/
       xmlns:exterms="http://example.org/stuff/1.0/">
  <rdf:Description rdf:nodeID="abc">
    <exterms:fullName>Dave Beckett</exterms:fullName>
    <exterms:homePage rdf:resource="http://purl.org/net/dajobe/"/>
  </rdf:Description>
</rdf:RDF>
```
Using typed literals:

```xml
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
     xmlns:exterms="http://www.example.org/terms/">
  <rdf:Description rdf:about="http://www.example.org/index.html">
    <exterms:creation-date
      rdf:datatype="http://www.w3.org/2001/XMLSchema#date">
      1999-08-16
    </exterms:creation-date>
  </rdf:Description>
</rdf:RDF>
```
Using XML entities:

```xml
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF
[<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:exterms="http://www.example.org/terms/">
    <rdf:Description rdf:about="http://www.example.org/index.html">
        <exterms:creation-date rdf:datatype="&xsd;date">
            1999-08-16
        </exterms:creation-date>
    </rdf:Description>
</rdf:RDF>
```
Abbreviating URIrefs using *fragment identifiers*:

```xml
<?xml version="1.0"?>

<!DOCTYPE rdf:RDF
    [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
         xmlns:exterms="http://www.example.com/terms/">
  <rdf:Description rdf:ID="item10245">
    <exterms:model rdf:datatype="&xsd;string">
      Overnighter
    </exterms:model>
    <exterms:sleeps rdf:datatype="&xsd;integer">2</exterms:sleeps>
    <exterms:weight rdf:datatype="&xsd;decimal">2.4</exterms:weight>
  </rdf:Description>
</rdf:RDF>
```
Using the constructs described so far, an RDF graph is written in RDF/XML as follows:

1. All blank nodes are assigned blank node identifiers.
2. Each node is listed in turn as the subject of an un-nested `rdf:Description` element, using an `rdf:about` attribute if the node has a URIref, or an `rdf:nodeID` attribute if the node is blank.
3. For each triple with this node as subject, an appropriate property element is created, with either literal content, an `rdf:resource` attribute specifying the object of the triple, or an `rdf:nodeID` attribute specifying the object of the triple.

⇒ provides the most direct representation of the graph structure
⇒ recommended for applications that process RDF/XML further
Other RDF capabilities:

- Using containers:
 -
 - \texttt{rdf:Bag}:
 \[
 \Rightarrow \text{group of resources or literals, possibly including duplicate members, without order}
 \]
 - \texttt{rdf:Seq}:
 \[
 \Rightarrow \text{group of resources or literals, possibly including duplicate members, where the order of the members is significant}
 \]
 - \texttt{rdf:Alt}:
 \[
 \Rightarrow \text{group of resources or literals that are alternatives}
 \]
Example:

```xml
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
         xmlns:s="http://example.org/students/vocab#">
    <rdf:Description rdf:about="http://example.org/courses/6.001">
        <s:students>
            <rdf:Bag>
                <rdf:li rdf:resource="http://example.org/students/Amy"/>
                <rdf:li rdf:resource="http://example.org/students/Tom"/>
                <rdf:li rdf:resource="http://example.org/students/Jim"/>
            </rdf:Bag>
        </s:students>
    </rdf:Description>
</rdf:RDF>
```
Using collections:

```xml
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
   xmlns:s="http://example.org/students/vocab#">
  <rdf:Description rdf:about="http://example.org/courses/6.001">
    <s:students rdf:parseType="Collection">
      <rdf:Description rdf:about="http://example.org/students/Amy"/>
      <rdf:Description rdf:about="http://example.org/students/Tom"/>
      <rdf:Description rdf:about="http://example.org/students/Jim"/>
    </s:students>
  </rdf:Description>
</rdf:RDF>
```
Reification:

exproducts:triple12345 rdf:subject exproducts:item10245 .
exproducts:triple12345 rdf:object "2.4"^^xsd:decimal .
rdf:value to represent the *main values* of a structured value:

```xml
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF
    [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
     xmlns:exterms="http://www.example.org/terms/">

<rdf:Description
    rdf:about="http://www.example.com/2002/04/products#item10245">
    <exterms:weight rdf:parseType="Resource">
        <rdf:value rdf:datatype="&xsd;decimal">2.4</rdf:value>
        <exterms:units rdf:resource="http://www.example.org/units/kilograms"/>
    </exterms:weight>
</rdf:Description>
</rdf:RDF>
```
Literals to represent fragments of XML:

```xml
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xml:base="http://www.example.com/books">

    <rdf:Description rdf:ID="book12345">
        <dc:title rdf:parseType="Literal">
            <span xml:lang="en">
                The &lt;br /&gt; Element Considered Harmful.
            </span>
        </dc:title>
    </rdf:Description>
</rdf:RDF>
```
RDF Vocabulary Description Language (RDF Schema)

- RDF Schema is used to describe types and properties of resources
- Provides a type system similar to those used in object-oriented programming languages:
 - Class hierarchy
 - Resources as instances of one or more classes
- RDF Schema facilities are themselves provided in the form of an RDF vocabulary defined in a namespace that is bound to the URI http://www.w3.org/2000/01/rdf-schema#
Vocabulary descriptions written in RDF Schema represent valid RDF graphs.

A class in RDF Schema corresponds to the generic concept of a Type or Category and can represent almost any category of thing, such as Web pages, people, document types, databases or abstract concepts.

Classes are described using the RDF Schema resources rdfs:Class and rdfs:Resource, and the attributes rdf:type and rdfs:subClassOf.

Properties are described using the RDF class rdf:Property, and the RDF Schema properties rdfs:domain, rdfs:range, and rdfs:subPropertyOf.
Example:
Tripels notation:

<table>
<thead>
<tr>
<th>Class</th>
<th>rdf:type</th>
<th>rdfs:Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>ex:MotorVehicle</td>
<td>rdf:type</td>
<td>rdfs:Class</td>
</tr>
<tr>
<td>ex:PassengerVehicle</td>
<td>rdf:type</td>
<td>rdfs:Class</td>
</tr>
<tr>
<td>ex:Van</td>
<td>rdf:type</td>
<td>rdfs:Class</td>
</tr>
<tr>
<td>ex:Truck</td>
<td>rdf:type</td>
<td>rdfs:Class</td>
</tr>
<tr>
<td>ex:MiniVan</td>
<td>rdf:type</td>
<td>rdfs:Class</td>
</tr>
<tr>
<td>ex:PassengerVehicle</td>
<td>rdfs:subClassOf</td>
<td>ex:MotorVehicle</td>
</tr>
<tr>
<td>ex:Van</td>
<td>rdfs:subClassOf</td>
<td>ex:MotorVehicle</td>
</tr>
<tr>
<td>ex:Truck</td>
<td>rdfs:subClassOf</td>
<td>ex:MotorVehicle</td>
</tr>
<tr>
<td>ex:MiniVan</td>
<td>rdfs:subClassOf</td>
<td>ex:Van</td>
</tr>
<tr>
<td>ex:MiniVan</td>
<td>rdfs:subClassOf</td>
<td>ex:PassengerVehicle</td>
</tr>
</tbody>
</table>
RDF/XML:

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://example.org/schemas/vehicles">
 <rdf:Description rdf:ID="MotorVehicle">
 <rdf:type
 rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 </rdf:Description>
 <rdf:Description rdf:ID="PassengerVehicle">
 <rdf:type
 rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
 </rdf:Description>
</rdf:RDF>
<rdf:Description rdf:ID="Truck">
 <rdf:type>
 rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdf:Description>

<rdf:Description rdf:ID="Van">
 <rdf:type>
 rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdf:Description>

<rdf:Description rdf:ID="MiniVan">
 <rdf:type>
 rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#Van"/>
 <rdfs:subClassOf rdf:resource="#PassengerVehicle"/>
</rdf:Description>
</rdf:RDF>
Describing classes:

- Defining simple classes:

  ```xml
  <rdf:Description rdf:ID="class_name">
    <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
  </rdf:Description>
  ```

- Class definitions may be abbreviated:

  ```xml
  <rdfs:Class rdf:ID="class_name"/>
  ```

- Specialization of classes using rdfs:subClassOf:

  ```xml
  <rdfs:Class rdf:ID="class_name">
    <rdfs:subClassOf rdf:resource="super_class"/>
  </rdfs:Class>
  ```
Example:

```
<rdf:Description rdf:ID="MiniVan">
    <rdf:type>
        rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"
    </rdf:type>
    <rdfs:subClassOf rdf:resource="#Van"/>
    <rdfs:subClassOf rdf:resource="#PassengerVehicle"/>
</rdf:Description>
```

or abbreviated:

```
<rdfs:Class rdf:ID="MiniVan">
    <rdfs:subClassOf rdf:resource="#Van"/>
    <rdfs:subClassOf rdf:resource="#PassengerVehicle"/>
</rdfs:Class>
```
Describing attributes:

- Properties in RDF are described as instances of class
 \[\text{exterms:weightInKg} \ \text{rdf:type} \ \text{rdf:Property}.\]

- Intended usage of properties can be described using the RDF Schema properties \text{rdfs:range} and \text{rdfs:domain}:
 - \text{rdfs:range}
 - Values of a property are instances of a designated class:
 - \[\text{ex:Person} \ \text{rdf:type} \ \text{rdfs:Class}.\]
 - \[\text{ex:author} \ \text{rdf:type} \ \text{rdf:Property}.\]
 - \[\text{ex:author} \ \text{rdfs:range} \ \text{ex:Person}.\]
Properties may have more than one `rdf:range` property:

```
ex:hasMother rdfs:range ex:Female .
ex:hasMother rdfs:range ex:Person .
exstaff:frank ex:hasMother exstaff:frances .
```

⇒ `exstaff:frances` has to be an instance of both classes `ex:Female` and `ex:Person`

Using typed literals for the `rdf:range` property:

```
ex:age rdf:type rdf:Property .
ex:age rdfs:range xsd:integer .
```

Remark: while it is possible to explicitly name types, e.g.:

```
xsd:integer rdf:type rdfs:Datatype .
```

it is not possible to define new types using RDF Schema
rdfs:domain

- Property applies to a designated class:

  ```
  ex:Book    rdf:type    rdfs:Class  .
  ex:author  rdf:type    rdf:Property .
  ex:author  rdfs:domain ex:Book  .
  ```

- Properties may have more than one rdfs:domain property:

  ```
  exthings:companyCar exterms:weight "2500"^^xsd:integer  .
  ```

⇒ exthings:companyCar has to be an instance of both classes ex:Book and ex:MotorVehicle
Serializing in RDF/XML:

```xml
<rdf:Property rdf:ID="registeredTo">
  <rdfs:domain rdf:resource="#MotorVehicle"/>
  <rdfs:range rdf:resource="#Person"/>
</rdf:Property>

<rdf:Property rdf:ID="rearSeatLegRoom">
  <rdfs:domain rdf:resource="#PassengerVehicle"/>
  <rdfs:range rdf:resource="&xsd;integer"/>
</rdf:Property>

<rdfs:Class rdf:ID="Person"/>
<rdfs:Datatype rdf:about="&xsd;integer"/>
```
Specialization of properties using `rdfs:subPropertyOf`:

```rdfs
ex:driver rdf:type rdf:Property .
ex:primaryDriver rdf:type rdf:Property .
ex:primaryDriver rdfs:subPropertyOf ex:driver .
```

Serializing in RDF/XML:

```xml
<rdf:Property rdf:ID="driver">
  <rdfs:domain rdf:resource="#MotorVehicle"/>
</rdf:Property>

<rdf:Property rdf:ID="primaryDriver">
  <rdfs:subPropertyOf rdf:resource="#driver"/>
</rdf:Property>
```
A property may have any number of rdfs:subPropertyOf relationships

RDF schema properties that apply to a given property also apply to its subproperties
Example

RDF Schema document:

```xml
<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [  
  <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#"]>]

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"  
  xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"  
  xml:base="http://example.org/schemas/vehicles">

  <rdfs:Class rdf:ID="MotorVehicle"/>
  <rdfs:Class rdf:ID="PassengerVehicle">  
    <rdfs:subClassOf rdf:resource="#MotorVehicle"/>  
  </rdfs:Class>

</rdfs:Class>
```

<rdfs:Class rdf:ID="Truck">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Van">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="MiniVan">
 <rdfs:subClassOf rdf:resource="#Van"/>
 <rdfs:subClassOf rdf:resource="#PassengerVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Person"/>

<rdfs:Datatype rdf:about="&xsd;integer"/>

<rdf:Property rdf:ID="registeredTo">
 <rdfs:domain rdf:resource="#MotorVehicle"/>
 <rdfs:range rdf:resource="#Person"/>
</rdf:Property>
<rdf:Property rdf:ID="rearSeatLegRoom">
 <rdfs:domain rdf:resource="#PassengerVehicle"/>
 <rdfs:range rdf:resource="&xsd;integer"/>
</rdf:Property>

<rdf:Property rdf:ID="driver">
 <rdfs:domain rdf:resource="#MotorVehicle"/>
</rdf:Property>

<rdf:Property rdf:ID="primaryDriver">
 <rdfs:subPropertyOf rdf:resource="#driver"/>
</rdf:Property>

</rdf:RDF>
Corresponding RDF instance document (ex:PassengerVehicle):

```xml
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [ 
  <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:ex="http://example.org/schemas/vehicles#"
  xml:base="http://example.org/things">
  <ex:PassengerVehicle rdf:ID="johnSmithsCar">
    <ex:registeredTo 
      rdf:resource="http://www.example.org/staffid/85740"/>
    <ex:rearSeatLegRoom
      rdf:datatype="&xsd;integer">127</ex:rearSeatLegRoom>
    <ex:primaryDriver 
      rdf:resource="http://www.example.org/staffid/85740"/>
  </ex:PassengerVehicle>
</rdf:RDF>
```
RDF Schema supplies a number of built-in properties:

- `rdfs:comment` to provide a human-readable description of a resource
- `rdfs:label` to provide a more human-readable version of a resource's name
- `rdfs:seeAlso` to indicate a resource that might provide additional information about the subject resource
- `rdfs:isDefinedBy` to indicate a resource that defines the subject resource (subproperty of `rdfs:seeAlso`)
Differences between RDF Schema declarations and type systems of object-oriented programming language:

- Instead of describing a class as having a collection of specific properties, an RDF schema describes properties as applying to specific classes of resources
 ⇒ Independence of classes and properties
- Properties are always defined on a global level
- RDF Schema descriptions are not necessarily prescriptive, but additional descriptions of resources (which may be used in instance documents)
 ⇒ Properties vs. constraints
- Schema capabilities not provided by RDF Schema:
 - Cardinality constraints on properties
 - Specifying that a given property is transitive
 - Specifying that a given property is a unique identifier (or key) for instances of a particular class
 - Specifying that two different classes (having different URIrefs) actually represent the same class
 - Specifying that two different instances (having different URIrefs) actually represent the same individual
 - Specifying constraints on the range or cardinality of a property that depend on the class of resource to which a property is applied
 - Description of new classes in terms of combinations of other classes (union, intersection, disjoint)
RDF in the Field: Dublin Core Metadata Initiative

- Minimal set of descriptive elements that facilitate the description and the automated indexing of document-like networked objects
- Originally developed in March 1995 at a Workshop on Metadata Management in Dublin, Ohio
- Suitable for use by resource discovery tools on the Internet
- Sufficiently simple to be understood and used by a wide range of authors and casual publishers and widely used in documenting Internet resources
Elements of the Dublin Core are defined in the Dublin Core Metadata Element Set, Version 1.1: Reference Description, and contain definitions for the following properties:
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>title</td>
<td>A name given to the resource</td>
</tr>
<tr>
<td>creator</td>
<td>An entity primarily responsible for making the content of the resource</td>
</tr>
<tr>
<td>subject</td>
<td>The topic of the content of the resource</td>
</tr>
<tr>
<td>description</td>
<td>An account of the content of the resource</td>
</tr>
<tr>
<td>publisher</td>
<td>An entity responsible for making the resource available</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>contributor</td>
<td>An entity responsible for making contributions to the content of the resource</td>
</tr>
<tr>
<td>date</td>
<td>A date associated with an event in the life cycle of the resource</td>
</tr>
<tr>
<td>type</td>
<td>The nature or genre of the content of the resource</td>
</tr>
<tr>
<td>format</td>
<td>The physical or digital manifestation of the resource</td>
</tr>
<tr>
<td>identifier</td>
<td>An unambiguous reference to the resource within a given context</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>source</td>
<td>A reference to a resource from which the present resource is derived</td>
</tr>
<tr>
<td>language</td>
<td>A language of the intellectual content of the resource</td>
</tr>
<tr>
<td>relation</td>
<td>A reference to a related resource</td>
</tr>
<tr>
<td>coverage</td>
<td>The extent or scope of the content of the resource</td>
</tr>
<tr>
<td>rights</td>
<td>Information about rights held in and over the resource</td>
</tr>
</tbody>
</table>
- Additional vocabulary is defined in http://purl.org/dc/terms
- Dublin Core Metadata may be captured in any suitable language (even in the form of HTML meta tags), but RDF is an ideal representation:

```xml
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:dc="http://purl.org/dc/elements/1.1/">
  <rdf:Description rdf:about="http://www.dlib.org">
    <dc:description>The D-Lib program supports the community of people with research interests in digital libraries and electronic publishing.</dc:description>
    <dc:publisher>Corporation For National Research Initiatives</dc:publisher>
    <dc:date>1995-01-07</dc:date>
  </rdf:Description>
</rdf:RDF>
```
<dc:subject>
 <rdf:Bag>
 <rdf:li>Research; statistical methods</rdf:li>
 <rdf:li>Education, research, related topics</rdf:li>
 <rdf:li>Library use Studies</rdf:li>
 </rdf:Bag>
</dc:subject>
<dc:type>World Wide Web Home Page</dc:type>
<dc:format>text/html</dc:format>
<dc:language>en</dc:language>
</rdf:Description>
</rdf:RDF>
Resource descriptions may either reside directly in the document:

```xml
<?xml version="1.0"?>
<svg width="4in" height="3in" version="1.1"
    xmlns = 'http://www.w3.org/2000/svg'>
    <metadata>
        <rdf:RDF
            xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
            xmlns:dc="http://purl.org/dc/elements/1.1/">
            <rdf:Description rdf:about="http://example.org/foo">
                <dc:creator>
                    Mary Lambert
                </dc:creator>
            </rdf:Description>
        </rdf:RDF>
    </metadata>
</svg>
```
or in a separate file (being referenced in the original document):

```xml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN">
<html>
  <head>
    <meta http-equiv="Content-Type"
      content="text/html; charset=us-ascii"/>
  </head>
  <body>
    <!-- .... -->
    <a href="http://www.example.org/metadata.rdf">Metadata</a>
  </body>
</html>
```
The following documents contribute to the specification of RDF:

- *RDF Concepts and Abstract Syntax*
- *RDF/XML Syntax Specification*
- *RDF Vocabulary Description Language 1.0: RDF Schema*
- *RDF Semantics*
- *RDF Test Cases*
- *RDF Primer*