Chapter II

Semantic Web
The Semantic Web

- is a concept by Tim Berners-Lee to extend the world wide web with machine-readable data describing the semantics of the content
- the idea is to extend human-readable data with additional information (meta data) that can be interpreted by a machine, so inquiries can be processed according to their meaning, rather than their spelling
- to create these additional data and to implement a semantic web, several methods can be used
 - taxonomies
 - thesauri
 - resource description frameworks
 - ontologies
 - topic maps
Semantic Web – Examples (I)

• FOAF – Friend of a Friend
 – is a project to model a machine-readable social network
 – a FOAF document contains information about a person (such as name, age, gender, addresses (website, weblog, home...), messenger-id...) and other people this person knows
 – the documents then refer to each other and can be analysed by a software, which is then able to visualise the details and the social structure
 – FOAF uses RDF
 – the project: http://www.foaf-project.org/
 – the specification: http://xmlns.com/foaf/0.1/
Semantic Web – Examples (II)

- **DOAC – Description of a Career**
 - is a project to describe the curriculum of a person in machine-readable form
 - a DOAC document contains information about the skills of a person (such as education, spoken languages, experiences, previous jobs, drivers license)
 - it is compatible with the European Union Europass Curriculum (see http://europass.cedefop.europa.eu/)
 - DOAC uses RDF
 - project: http://ramonantonio.net/doac/
 - specification: http://ramonantonio.net/doac/0.1/
Semantic Web – Examples (III)

- SemanticGov
 - is a project of an international consortium, sponsored by the European Union, to improve the administration of the EU (e.g. the co-operation between authorities)
 - the project duration is 36 months (01.01.2006 – 31.12.2008), the budget is around 4.37 billion euros
Meta Data

- data containing information about other data (the latter mostly a larger amount of data)
- are used to describe information resources
 - to improve their discovering
 - to document their mutual relations
- are saved
 - within the document (as a meta tag)
 - in assigned reference books (such as catalogs)
 - as an attribute which is held together with the document
Classification

• is a method to divide objects into categories or classes
• the division bases on the moulding of the objects common properties
• can be done
 – manually (categorising, sorting, indexing)
 – automatically (supervised learning)
• classification systems (divided by structure)

<table>
<thead>
<tr>
<th></th>
<th>mono-hierarchical</th>
<th>poly-hierarchical</th>
</tr>
</thead>
<tbody>
<tr>
<td>heredity</td>
<td>single (strong hierarchy)</td>
<td>multiple (weak hierarchy)</td>
</tr>
<tr>
<td>superclasses</td>
<td>one</td>
<td>more than one</td>
</tr>
<tr>
<td>structure</td>
<td>tree</td>
<td>non-cyclic directed graph</td>
</tr>
</tbody>
</table>
Taxonomies

- are classification systems with mono-hierarchical structures
- to create a simple semantic
- the root contains general information
- when navigating through the tree structure from the root element on the information gets more and more specific
Thesauri

- are classification systems with poly-hierarchical structures
- are systematically ordered, networked collections of terms (a so-called "controlled vocabulary", that means a list of terms with an unambiguous, non-redundant definition that have been enumerated explicitly), connected via associative and parent-child relationships
- used to describe/represent topics, for subject indexing and/or document retrieval
- examples:
 - OpenThesaurus: http://www.openthesaurus.de/
the Resource Description Framework (RDF) was developed as a foundation stone for the semantic web by the W3C in 1999

it is a formal language for the provision of meta data via the WWW and defines a fundamental vocabulary to formulate arbitrary statements about resources

a statement is a triple consisting of (in this order)
 - a subject
 - a predicate (property)
 - an object
 - -> a person (subject) has (predicate) a name (object)
 - all elements of a triple (the resources) are identified by a URI
 - an RDF document is a collection of linked statements
RDF (II)

- the predicate tells something about the subject
- the object is the value of the predicate; it can be a resource (identified by a URI) or just a literal (a constant value)
- predicates and objects can be subjects in different statements
- resources can be used for grouping, they don't have a name then (i.e. a name can be grouped in name and first name)
- statements can be subjects in another statement -> this is called a reification
RDF Graph

- is the standard development method for RDF
- is a labeled, directed, easy readable graph
- modeling:
 - subjects are modeled as a node in form of an ellipse
 - predicates are modeled as an arc
 - objects represented by a URI are modeled as a node in form of an ellipse
 - objects represented by a literal are modeled as a node in form of a box
 - resources used for grouping are modeled as blank nodes (these cannot be referenced)
- SPARQL (SPARQL Protocol and RDF Query Language) is a W3C query language recommendation for RDF graphs
 - http://www.w3.org/TR/rdf-sparql-query/
RDF Graph - Example

- there is a person identified by http://www.w3.org/people/em/contact#me, whose name is Eric Miller, whose email address is em@w3.org, and whose title is Dr.
Blank Nodes – Example (I)

http://www.example.org/staffid/85740

http://www.example.org/terms/address

1501 Grant Avenue, Bedford, Massachusetts 01730
Blank Nodes – Example (II)
Blank Nodes – Example (III)

```owl
exaddressid:85740   exterms:street   "1501 Grant Avenue" .
exaddressid:85740   exterms:city   "Bedford" .
exaddressid:85740   exterms:state   "Massachusetts" .
```
Typed Literals

http://www.example.org/staffid/85740

http://www.example.org/terms/age

"27"^^<http://www.w3.org/2001/XMLSchema#integer>

exstaff:85740 exterms:age "27"^^xsd:integer
RDF Syntax

- to implement RDF models two different syntaxes exist
 - N3 (Notation 3) by Tim Berners-Lee
 - http://www.w3.org/DesignIssues/Notation3.html
 - an XML based syntax which is the most used
 - http://www.w3.org/TR/rdf-syntax-grammar/
RDF Serialisation

- an RDF graph is encoded as XML elements, attributes, element content and attribute values

- URI references of predicates are written as a combination of a prefix denoting a namespace URI and a local element name (so-called XML QNames)

- URI references of subjects and objects are written as XML attribute values

- literal nodes (which are always object nodes) become XML element text content or attribute values
RDF Serialisation - Example

- there is a person identified by http://www.w3.org/people/em/contact#me, whose name is Eric Miller, whose email address is em@w3.org, and whose title is Dr.

```xml
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
         xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">
    <contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
        <contact:fullName>Eric Miller</contact:fullName>
        <contact:mailbox rdf:resource="mailto:em@w3.org"/>
        <contact:personalTitle>Dr.</contact:personalTitle>
    </contact:Person>
</rdf:RDF>
```
Multiple Statements

- an RDF graph consisting of multiple statements can be represented using multiple description elements:

```xml
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:exterms="http://www.example.org/terms/>
    <rdf:Description rdf:about="http://www.example.org/index.html">
        <exterms:creation-date>August 16, 1999</exterms:creation-date>
    </rdf:Description>
    <rdf:Description rdf:about="http://www.example.org/index.html">
        <dc:language>en</dc:language>
    </rdf:Description>
</rdf:RDF>
```
Multiple Predicates

- a description element may also contain multiple predicates (predicates may even import more than one namespace):

```xml
<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:exterms="http://www.example.org/terms/">
    <rdf:Description rdf:about="http://www.example.org/index.html">
        <exterms:creation-date>August 16, 1999</exterms:creation-date>
        <dc:language>en</dc:language>
        <dc:creator rdf:resource="http://www.example.org/staffid/85740"/>
    </rdf:Description>
</rdf:RDF>
```
Serialisation - Blank Nodes

- blank nodes are serialised using node identifiers

```xml
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
        xmlns:dc="http://purl.org/dc/elements/1.1/"
        xmlns:exterms="http://example.org/stuff/1.0/">
  <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
    <dc:title>RDF/XML Syntax Specification (Revised)</dc:title>
    <exterms:editor rdf:nodeID="abc"/>
  </rdf:Description>
  <rdf:Description rdf:nodeID="abc">
    <exterms:fullName>Dave Beckett</exterms:fullName>
    <exterms:homePage rdf:resource="http://purl.org/net/dajobe/"/>
  </rdf:Description>
</rdf:RDF>
```
Serialisation: Typed Literals (I)
Serialisation: Typed Literals (II)

- `<?xml version="1.0"?>

 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:exterms="http://www.example.org/terms/">

 <rdf:Description rdf:about="http://www.example.org/index.html">
 <exterms:creation-date
 rdf:datatype="http://www.w3.org/2001/XMLSchema#date">
 1999-08-16</exterms:creation-date>
 </rdf:Description>

 </rdf:RDF>
Using XML Entities

- `<?xml version="1.0"?>`

 `<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>`

 `<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:exterms="http://www.example.org/terms/">
 <rdf:Description rdf:about="http://www.example.org/index.html">
 <exterms:creation-date rdf:datatype="&xsd;date">1999-08-16</exterms:creation-date>
 </rdf:Description>
 </rdf:RDF>`
RDF-Containers

- **rdf:Bag**
 - group of resources or literals, possibly including duplicate members, without order
- **rdf:Seq**
 - group of resources or literals, possibly including duplicate members, where the order of the members is significant
- **rdf:Alt**
 - group of resources or literals that are alternatives
RDF-Containers - Example

- <?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://example.org/students/vocab#">
 <rdf:Description rdf:about="http://example.org/courses/6.001">
 <s:students>
 <rdf:Bag>
 <rdf:li rdf:resource="http://example.org/students/Amy"/>
 <rdf:li rdf:resource="http://example.org/students/Tom"/>
 <rdf:li rdf:resource="http://example.org/students/Jim"/>
 </rdf:Bag>
 </s:students>
 </rdf:Description>
 </rdf:RDF>
Resources

- literature

- specification
 - http://www.w3.org/RDF/

- validator
 - http://www.w3.org/RDF/Validator/

- RDF/XML syntax specification
 - http://www.w3.org/TR/rdf-syntax-grammar/