Thema:

Informationsqualität im IT-Berichtswesen: Identifizierung von Inkonsistenzen mittels XML

Studienarbeit

Arbeitsgruppe Wirtschaftsinformatik

Themensteller: Prof. Dr. rer. pol. habil. Hans-Knud Arndt
Betreuer: Dipl.-Wirt.-Inform. Sebastian Günther
vorgelegt von: Daniel Zander
Inhaltsverzeichnis

Inhaltsverzeichnis ... II
Verzeichnis der Abkürzungen und Akronyme ... IV
Abbildungsverzeichnis ... V
Tabellenverzeichnis .. VI

1 Handarbeit im Berichtswesen ... 1
 1.1 Motivation: Stolpersteine im Erstellungsprozess 1
 1.2 Zielstellung: Ein Schritt zur „Entsteinung“ .. 2
 1.3 Vorgehen und Aufbau der Arbeit ... 2

2 Berichtswesen im IT-Controlling ... 4
 2.1 Zum Begriff „IT-Controlling“ .. 4
 2.2 Stand der Technik in der Computerunterstützung 6
 2.3 Berichtenswerte Daten ... 7

3 Strategien zur Verbesserung der Informationsqualität 11
 3.1 Qualitätsanforderungen an Berichte ... 11
 3.2 Entstehung von Datenfehlern ... 13
 3.3 Methoden zur Verbesserung der Informationsqualität 14
 3.3.1 Vorstellung grundlegender Methoden 14
 3.3.2 Bewertung und Auswahl .. 17

4 Fehlererkennung ... 20
 4.1 Normierung einer vergleichbaren Projektstruktur 20
 4.1.1 Entscheidung für XML .. 20
 4.1.2 Rahmende Strukturelemente .. 21
 4.1.3 Integration der berichtenswerten Daten 24
 4.2 Identifizierung inkonsistenter Daten .. 26
 4.2.1 Datenvergleich mehrerer Systeme 26
 4.2.2 Regelbasierte Überprüfung einzelner Systeme 28
 4.2.3 Dokumentation der Inkonistenzen 29
 4.3 Fallbeispiel ... 30
 4.4 Unterstützende Diagramme .. 34
5 Beitrag zur Qualitätsverbesserung ... 38
6 Zusammenfassung und Ausblick ... 39
Literaturverzeichnis ... 41
A Projekte.xml - Die Projektstruktur ... 43
B Projekte.xsd - Formalisierung der Projektstruktur .. 46
C Inkonsistenzen.xml - Das Ergebnisdokument ... 49
D Inkonsistenzen.xsd - Formalisierung des Ergebnisdokumentes 51
E Projektdaten inkl. Abweichungen nach Vergleich B und C 55
F Widersprüche nach Regelprüfung von ERP und PPM 56
Verzeichnis der Abkürzungen und Akronyme

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Arbeitspaket</td>
</tr>
<tr>
<td>BI</td>
<td>Business Intelligence</td>
</tr>
<tr>
<td>DGIQ</td>
<td>Deutsche Gesellschaft für Informations- und Datenqualität e.V.</td>
</tr>
<tr>
<td>DW</td>
<td>Data Warehouse</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>IQ</td>
<td>Informationsqualität</td>
</tr>
<tr>
<td>IT</td>
<td>Informationstechnik</td>
</tr>
<tr>
<td>PPM</td>
<td>Projektportfolio-Management</td>
</tr>
<tr>
<td>PSP</td>
<td>Projektstrukturplan</td>
</tr>
<tr>
<td>TP</td>
<td>Teilprojekt</td>
</tr>
<tr>
<td>W3C</td>
<td>World Wide Web Consortium</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abb. 1.1: Erstellungsarten von Managementberichten nach Bereichen 1
Abb. 2.1: Positionierung des IT-Controllings ... 4
Abb. 2.2: Zukünftige Integration in ERP-Umgebungen ... 7
Abb. 2.3: Informationsangebot, -nachfrage und -bedarf ... 8
Abb. 2.4: Magisches Dreieck des Projektcontrollings .. 9
Abb. 2.5: Ist- und Plandaten im Vergleich (mit Beispielen) .. 10
Abb. 3.1: Informationsqualität in 15 Merkmalen und 4 Kategorien 11
Abb. 3.2: Schematische Methodendarstellung zur Informationsgenerierung 19
Abb. 4.1: Graphische Projektstrukturen und deren Umsetzung in XML 22
Abb. 4.2: Rahmenstruktur und deren Umsetzung in XML .. 23
Abb. 4.3: Einordnung von Terminen in Projekte .. 24
Abb. 4.4: Einordnung von Kosten in Projekte ... 25
Abb. 4.5: Einordnung von Leistungen in Projekte ... 25
Abb. 4.6: Struktur für identifizierte Inkonsistenzen in XML .. 29
Abb. 4.7: Vernetzung der Systemen im Fallbeispiel .. 31
Abb. 4.8: Graphische Auswertung der Abweichungen ... 34
Abb. 4.9: Graphische Auswertung der Kostenabweichungen (mit Drill-down) 35
Abb. 4.10: Graphische Auswertung der Widersprüche .. 36
Tabellenverzeichnis

Tab. 3.1: Qualitätsanforderungen an Berichte ... 12

Tab. 3.2: Nutzenbewertung der Verbesserungsmethoden .. 17

Tab. 4.1: Definierte Zusammenhänge zwischen Terminen, Kosten und Leistungen 28
1 Handarbeit im Berichtswesen

1.1 Motivation: Stolpersteine im Erstellungsprozess

![Abb. 1.1: Erstellungsarten von Managementberichten nach Bereichen]

Quelle: Heins (2008), S. 6

1.2 Zielstellung: Ein Schritt zur „Entsteinung“

1.3 Vorgehen und Aufbau der Arbeit

Zunächst werden Begriffe bezüglich Controlling und Berichtswesen geklärt und daraus entscheidungsrelevante Projektdaten erarbeitet. In Vorbereitung der Auseinandersetzung mit grundlegenden Qualitätsverbesserungsmethoden werden Informationsqualität gemäß der Definition der DEUTSCHEN GESELLSCHAFT FÜR INFORMATIONS- UND DATENQUALITÄT (DGIQ) und Datenfehler besprochen.

Abschließend wird noch einmal auf die Informationsqualität eingegangen, um mit der Betrachtung der Qualitätsverbesserung auf Berichte abzuschließen.
2 Berichtswesen im IT-Controlling

2.1 Zum Begriff „IT-Controlling“

![Diagramm der Positionierung des IT-Controllings](Quelle: Gadatsch/Mayer (2006), S. 41)

Abb. 2.1: Positionierung des IT-Controllings

Gemäß den vorherigen Ausführungen bezüglich Controlling und IT-Projekten wird sich hier der Definition von GADATSCHE/MAYER angeschlossen. Das IT-Controlling ist das „Instrument zur Entscheidungsvorbereitung im Rahmen der Nutzung von IT“; genauer zur „Beschaffung, Aufbereitung und Analyse von Daten zur Vorbereitung zielsetzungs-

gerechter Entscheidungen bei Anschaffung, Realisierung und Betrieb von Hardware und Software“ (vgl. Gadatsch/Mayer (2006), S. 31.).

2.2 Stand der Technik in der Computerunterstützung

Wichtiger ist aber der Einsatz von computergestützten Berichtssystemen, um wegen der Masse an gespeicherten und zukünftig zu speichernden Daten die Verfügbarkeit von Informationen zu gewährleisten. Berichtssysteme unterscheidet Horváth nach (vgl. Horváth (2001), S. 707f.):

- Reinen und Ausnahme-Berichtssystemen,
- Abfragesystemen und
- Simulations- und Optimierungssystemen.

Seien es standardisierte Informationen mit oder ohne Planabweichungsinformationen oder Abfragen zu vorgegebenen oder individuellen Fragestellungen (vgl. Horváth (2001), S. 707f.), ein DW bedient diese Anforderungen an ein Informationssystem für das Berichtswesen. Seine Daten zur Planung und Entscheidungsfindung sind eine Sammlung über einen langfristigen Zeithorizont. Das DW extrahiert Daten aus vorhandenen Quellsystemen und transformiert und speichert sie in einer Datenbasis. Detailliertere Analysen nach Auffälligkeiten auf eben dieser Datenbasis dienen zur frühzeitigen Chancen- und Risikobewertung. Der Zugriff auf vordefinierte Berichte und unterschied-
lichste BI-Werkzeuge unterstützt die Kontrolle und die Generierung von zukunftsorientierten Handlungsalternativen.

Ein DW ist folglich für die Analysen im Controlling ein wichtiger und fester Bestandteil, wie bereits die einführende Abb. 1.1 zeigte. Die Abb. 2.2 ist der gleichen Quelle entnommen und verdeutlicht, dass das DW und BI in vier von zehn deutschen Großunternehmen Einzug gehalten hat bzw. diese Rate zukünftig weiter steigen wird.

\[\text{Vgl. Heins (2008), S. 6.}\]

Abb. 2.2: Zukünftige Integration in ERP-Umgebungen

2.3 Berichtswerte Daten

ten mit Hilfe von Filtertechniken reduziert.\footnote{Siehe Horváth (2001), S. 708.} Dazu beantwortet Abb. 2.3 die folgenden Fragen, indem lediglich die Schnittmenge notwendig und somit berichtenswert ist.

- Was ist die Informationsnachfrage?
- Welche Informationen werden angeboten?
- Sind die angebotenen und/oder nachgefragten Informationen notwendige Informationen?

Im Rahmen der *Projektkontrolle* gilt es Vermeidung oder Begrenzung dieser Risiken zu ermöglichen. BURGHARDT empfiehlt daher Termin-, Sachfortschritts-, Kosten- und Aufwandskontrollen durchzuführen, deren Informationen zur Projektberichtserstattung in Berichten münden. Auch KEBLER/WINKELHOFER sagen, dass über die nachfolgenden Projektdaten stets zu berichten ist (vgl. Keßler/Winkelhofer (1999), S. 159f.). Abb. 2.4 zeigt zudem die gegenseitigen Beeinflussungen der beschriebenen Daten auf.

- Die Kontrolle der **Kosten** dient zur Prävention vor drohende Budgetüberschreitungen, was sich z.B. in Leistungskürzungen niederschlägt.

- Mit **Terminen** sind Fertigstellungstermine oder sonstige Meilensteine gemeint. Die Kontrolle sichert den Endtermin des Projektes, denn zusätzliche Zeit erhöht die Kosten z.B. durch mehr Arbeitsstunden.

- **Leistung** hingegen, im Folgenden synonym zu Sachfortschritt verwendet, ist schwerer zu fassen. Gemeint ist damit der Fertigstellungsgrad; genauer das Verhältnis von erbrachter Leistung zu Gesamtleistung zur Projektzielerfüllung. Die Kontrolle verhindert z.B. das geplante Leistungsumfang eine Verlängerung benötigen und somit mehr Budget.

![Quelle: Gadatsch (2008), S. 17.](images/figure2_4.png)

Abb. 2.4: Magisches Dreieck des Projektcontrollings
Zur frühzeitigen Erkennung von Termin- oder Kostenrisiken sind die Istdaten den Plan-
daten zum Zwecke der Projektberichterstattung vergleichend gegenüber zu stellen. Sol-
che Abweichungsanalysen (Plan-Ist-Vergleiche) und Trendanalysen (Plan-Plan-
Vergleiche) zählen deshalb zu den Schwerpunkten im Berichtswesen (vgl. Burghardt
(1997), S. 402.), damit Gegenmaßnahmen rechtzeitig eingeleitet werden können, ohne
Plankorrekturen vornehmen zu müssen (vgl. Burghardt (1997), S. 302.).

Die Nachkalkulationen zum Projektabschluss beruhen ebenfalls auf den genannten Pro-
zejtdaten. Gründe für aufgetretene Überschreitungen oder auch eingehaltene Pläne gilt
es dabei zur Erfahrungssammlung zusammen zu tragen und festzuhalten, um aus den
Erkenntnissen für spätere Planungen zu lernen (vgl. Burghardt (1997), S. 19.).

Resultierend aus den vorherigen Ausführungen zum Projektmanagement sind Termine,
Leistungen und Kosten stets zu berichten und für Analysen in Ist- und Plandaten zu un-
tergliedern. Diese relevanten und als berichtenswert erachteten Projektdaten wurden in
Abb. 2.5 abschließend zusammenfassend dargestellt und deren Relevanz mit Beispielen
unterlegt.

Abb. 2.5: Ist- und Plandaten im Vergleich (mit Beispielen)

<table>
<thead>
<tr>
<th>Ist</th>
<th>Termine</th>
<th>Leistungen</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Letztes Rückmel-de datum</td>
<td>• Gemeldeter Fertigstellungsgrad</td>
<td>• Verbuchter Aufwand</td>
<td>• Verbuchter Aufwand</td>
</tr>
<tr>
<td>• Aktuelles Datum</td>
<td></td>
<td>• Obligo</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergleich</th>
<th>Fristgerecht oder Terminverzug</th>
<th>Einhaltung oder Rückstand</th>
<th>Deckung oder Überziehung</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Starttermin</td>
<td>• Geplanter Fertigstellungsgrad</td>
<td>• Geplantes Budget</td>
<td></td>
</tr>
<tr>
<td>• Meilenstein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Endtermin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Läuft das Projekt planmäßig?
3 Strategien zur Verbesserung der Informationsqualität

3.1 Qualitätsanforderungen an Berichte

Quelle: DGIQ (2007)

Abb. 3.1: Informationsqualität in 15 Merkmalen und 4 Kategorien

3 Häufigkeiten von Attributen in der Literatur siehe Treiblmaier (2006), S. 37

Tab. 3.1: Qualitätsanforderungen an Berichte

<table>
<thead>
<tr>
<th>Qualitätsmerkmale</th>
<th>Erklärungen und Beispiele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktualität</td>
<td>Ein Bericht ist aktuell, wenn die beinhalteten Informationen die tatsächlichen Werte der jeweiligen Projekte zeitnah widerspiegeln. Zum Zeitpunkt der Berichtserstellung dürfen die zugrundeliegenden Daten einen festzulegenden Zeithorizont nicht überschreiten.</td>
</tr>
<tr>
<td></td>
<td>Der Sachfortschritt ist stets der letzten Projektrückmeldung zu entnehmen.</td>
</tr>
<tr>
<td>Angemessener Umfang</td>
<td>Ein Bericht ist von angemessenem Umfang, wenn die Menge der Informationen den Informationsbedarf der Unternehmensführung stillt.</td>
</tr>
<tr>
<td></td>
<td>Zur Beantwortung der Fragen des Managements werden vor allem Termine, Kosten und Leistungen benötigt.</td>
</tr>
<tr>
<td>Bearbeitbarkeit</td>
<td>Ein Bericht ist leicht bearbeitbar, wenn er in einer Form vorliegt, die weitere Auswertungen oder Änderungen zulässt.</td>
</tr>
<tr>
<td></td>
<td>Berichte werden nicht als PDF- oder JPEG-Datei, sondern als XLS-Datei (Excel) generiert.</td>
</tr>
<tr>
<td>Eindeutige Auslegbarkeit</td>
<td>Ein Bericht ist eindeutig auslegbar, wenn er so formuliert ist, dass seine Informationen von jedem Leser stets gleich interpretiert werden.</td>
</tr>
<tr>
<td></td>
<td>Neben den Projektinformationen sind Einheiten (€, $, %, etc.) und Rundungen (€, T€, Mio€, etc) zwingen anzugeben.</td>
</tr>
<tr>
<td>Einheitliche Darstellung</td>
<td>Ein Bericht ist einheitlich dargestellt, wenn er standardisiert im selben Format und Layout abgebildet wird.</td>
</tr>
<tr>
<td></td>
<td>Datumsangaben sind zu jedem Projekt im Format ‘dd.mm.yyyy’ anzugeben.</td>
</tr>
<tr>
<td>Fehlerfreiheit</td>
<td>Ein Bericht ist fehlerfrei, wenn er mit der Realität übereinstimmt.</td>
</tr>
<tr>
<td></td>
<td>Ein Projektstart wurde auf den 31.02. angesetzt. Der Sachfortschritt eines Projektes beträgt 10%, obwohl das Projekt noch nicht gestartet wurde.</td>
</tr>
<tr>
<td>Glaubwürdigkeit</td>
<td>Ein Bericht ist glaubwürdig, wenn die Informationen vertrauenswürdig und zuverlässig beschafft werden.</td>
</tr>
<tr>
<td></td>
<td>Daten aus einem Data Warehouse, im Gegensatz zu Flurgesprächsinformationen, gelten als glaubwürdig.</td>
</tr>
<tr>
<td>Hohes Ansehen</td>
<td>Ein Bericht ist hoch angesehen, wenn die Datenquelle über einen länger andauernden Zeitraum positive Erfahrungen bei dem Nutzer hinterlassen hat.</td>
</tr>
<tr>
<td></td>
<td>Durch Nachkontrollen eines zweiten Mitarbeiters wurden seit langem keine Fehler in den Berichten entdeckt.</td>
</tr>
<tr>
<td>Objektivität</td>
<td>Ein Bericht ist objektiv, wenn er stets sachlich und wertfrei ist.</td>
</tr>
<tr>
<td></td>
<td>Persönliche Präferenzen (gut, schlecht) sind fehl am Platz.</td>
</tr>
<tr>
<td>Qualitätsmerkmale</td>
<td>Erklärungen und Beispiele</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Relevanz</td>
<td>Ein Bericht ist relevant, wenn er der Unternehmensführung notwendige Informationen liefert.</td>
</tr>
<tr>
<td></td>
<td>Sekundengenaue Meilensteine oder Leistungen auf 6 Nachkommastellen sind für die Projektkontrolle unmaßgeblich.</td>
</tr>
<tr>
<td>Übersichtlichkeit</td>
<td>Ein Bericht ist übersichtlich, wenn genau die benötigten Informationen in einem passenden und leicht fassbaren Format dargestellt werden.</td>
</tr>
<tr>
<td></td>
<td>Die Darstellung von Projektdaten in einer Liste oder Tabelle ist einem fortlauenden String vorzuziehen.</td>
</tr>
<tr>
<td></td>
<td>Eine sich über mehrere Seiten erstreckende Tabelle wirkt hingegen unübersichtlich.</td>
</tr>
<tr>
<td>Verständlichkeit</td>
<td>Ein Bericht ist verständlich, wenn er ohne zusätzlichen Aufwand verstanden kann.</td>
</tr>
<tr>
<td></td>
<td>Informationen sind einem Projektütitel und nicht der systeminternen ID zu zuordnen.</td>
</tr>
<tr>
<td>Vollständigkeit</td>
<td>Ein Bericht ist vollständig, wenn alle Daten zum Erstellungszeitpunkt zur Verfügung stehen und genutzt werden.</td>
</tr>
<tr>
<td></td>
<td>Bei der Gesamtkostenermittlung müssen die Kosten aller Projekte summiiert werden.</td>
</tr>
<tr>
<td>Wertschöpfung</td>
<td>Ein Bericht ist wertschöpfend, wenn seine Nutzung zur Entscheidungsfindung beiträgt.</td>
</tr>
<tr>
<td></td>
<td>Ein Bericht des Projekt X ist für die einzelne Planung von Projekt Y irrelevan.</td>
</tr>
<tr>
<td>Zugänglichkeit</td>
<td>Ein Bericht ist zugänglich, wenn er anhand einfacher Verfahren und auf dem Weg abrufbar ist.</td>
</tr>
<tr>
<td></td>
<td>Berechtigung zum Zugriff auf vordefinierte Berichte im Data Warehouse</td>
</tr>
</tbody>
</table>

Beiläufig deutete Tab. 3.1 an, dass eine vollkommen getrennte Betrachtung einzelner Merkmale nahezu unmöglich ist, da sich die Merkmale gegenseitig beeinflussen können. Gewissermaßen führt mangelnde Vollständigkeit zu Geringem Ansehen, was einerseits an der Glaubwürdigkeit zweifeln lässt und andererseits, aufgrund der unvollständigen Datengrundlage, die Wertschöpfung negativ beeinflusst.

3.2 Entstehung von Datenfehlern

Eine Datenquelle (Single-Source)

Mehrere integrierte Datenquellen (Multi-Source)

3.3 Methoden zur Verbesserung der Informationsqualität

3.3.1 Vorstellung grundlegender Methoden

Reaktivität basiert auf dem Prinzip der Nachkontrolle. Zu aller erst müssen Fehler auftreten, um erkannt zu werden und um mit der Korrektur derer zu beginnen. Grundidee

\(^4\) Unterscheidung von Heterogenität siehe Wiederhold (1993), S. 434f.
zur Erkennung ist der Vergleich der Daten mit Hilfe von Vergleichsdaten oder der realen Welt. Die anschließende Korrektur ist hingegen weitaus schwieriger, wobei Maßnahmen sowohl lediglich beim Datensatz als auch beim Prozess vorgenommen werden können.

REDMAN formuliert dazu drei grundlegenden Verbesserungsmethoden, die Fehlern auf sehr reaktive Weise bis hin zur zukunftsorientierten proaktiven Weise entgegen wirken. Die folgenden drei Unterabschnitte stellen die der Literatur entnommenen Methoden inklusive ihrer Vor- und Nachteile vor (vgl. Redman (1996), S. 22ff.).

Fehlererkennung und –korrektur

Diese Verbesserungsmethode beinhaltet vier reaktive Ansätze, die auf unterschiedlichem Wege Fehler entdecken und die fehlerhaften Werte korrigieren.

- Der Database bashing genannte Ansatz behandelt Fehler, indem er vergleichbare Datensätze mindestens zweier übereinandergelegter Datenquellen gegenüberstellt. Über-
einstimmende Datensätze werden als fehlerfrei eingestuft. Demzufolge gelten abwei-
chende Datensätze als fehlerhaft und sind zu korrigieren. Zur Korrektur wird ein
Quellsystem als Vergleichsbasis herangezogen, das die korrekten Werte für die feh-
lerhaften Datensätze liefert. Naheliegend ist, dass die Vergleichsbasis unabhängig
und fehlerbereinigt sein muss, weil sonst fehlerbehaftete Datensätze im Vergleich als
korrekt anerkannt werden. Vorteil hingegen ist, dass der Ansatz einfach durchzufüh-
ren und nachzuvollziehen ist.

- **Data edits** indessen kontrollieren Datensätze mittels regelbasierten Routinen. Die
Regeln definieren Wertebereiche für einzelne Felder oder Zusammenhänge zwischen
mehreren Feldern. Verstöße gegen Regeln, wie „Leistung muss kleiner als 100%
sein“ oder „Ist-Kosten dürfen Plan-Kosten nicht überschreiten“ führen zu Widersprü-
chen. Dadurch lässt sich Integrität garantieren, jedoch garantieren die Regeln keine
Korrekttheit. Es bedarf unbedingt einer weiteren Untersuchung der Fehler. In Verbin-
dung mit **Clean ups** werden entdeckte Bereichsverletzungen oder Widersprüche eli-
miniert. Beispielweise kann ein Projekt als gestartet angesehen werden, wenn der
Starttermin vergangen, Ist-Leistung erfolgt und Ist-Kosten verbucht sind. Sollte das
Projekt jedoch den Status „beantragt“ haben, sollte dieser „gestartet“ heißen.

Der Fokus aller Ansätze dieser Methode liegt, wie gezeigt, in der Fehlerbereinigung.
Daher haben alle Ansätze einen Nachteil gemein. Sie erkennen zwar mögliche Fehler,
jedoch versuchen sie diese nur zu korrigieren und nicht deren Entstehung zu verhindern.
Dementsprechend sollte diese Methode nicht bei sensiblen und sich schnelländernden
Daten angewandt werden. Die beiden anderen Methoden nehmen sich diesem Nachteil
an.

Prozesskontrolle und Verbesserung

Die Prozesskontrolle geschieht im Rahmen des Prozessmanagements. Werden Daten-
fehler entdeckt, werden nicht die Fehler selbst bereinigt, sondern der Entstehungsgrund.
Dazu wird der Prozess schrittweise überwacht, um festzustellen, in welchem Prozess-
schritt die Fehler entstehen. Die Verbesserung setzt dann an diesem Punkt an. Bei sich
schnell ändernden Datenbeständen werden dadurch viele Fehler bereits vor deren Ent-
stehung unterbunden. Dessen ungeachtet ist das Re-engineering aufwändig, da es Zeit
und Organisation erfordert.
Prozessdesign

3.3.2 Bewertung und Auswahl

Im vorherigen Abschnitt wurde bereits gezeigt, dass jede Methode ihre Vor- und Nachteile hat. Auf kurze oder lange Sicht verspricht jede Methode, unter Betrachtung des Verbesserungspotentials und der Kosten bzw. des Aufwands, unterschiedlichen Nutzen. Die Nutzenbewertung der genannten Methoden wurde von Redman entsprechend Tab. 3.2 durchgeführt und wird für die anknüpfende Methodenauswahl herangezogen.

Tab. 3.2: Nutzenbewertung der Verbesserungsmethoden

Vgl. Redman (1996), S. 25 (eigene Übersetzung)

<table>
<thead>
<tr>
<th>Methode bzw. Ansatz</th>
<th>Verbesserung</th>
<th>Aufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>temporär</td>
<td>dauerhaft</td>
</tr>
<tr>
<td>Laissez faire</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Realweltlicher Vergleich</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Database bashing</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>Data clean ups inkl. edits</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>Prozesskontrolle</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td>Prozessdesign</td>
<td>±</td>
<td>+</td>
</tr>
</tbody>
</table>

Im Rahmen der zu erarbeitenden Methode werden Daten eines Systems, die aus anderen Systemen stammen, überprüft. Im Fall des IT-Berichtswesen sind damit meist ein DW und dessen Datenquellen gemeint. Das DW extrahiert aus anderen Datenquellen die Projektdata (Termine, Kosten und Leistungen) und transformiert diese gegebenenfalls, um sie analysespezifisch zu speichern. Nach diesen Schritten müssen die extrahierten Termin-, Kosten und Leistungswerte mit denen in den Quellsystemen weiterhin übereinstimmen. Aber auch andere Szenarien ohne DW, bei denen mehrere Systeme berich-
tenswerte Daten untereinander austauschen, sind denkbar. Generelle Bedingung dabei ist, dass die Systeme überlappen und somit die ausgetauschten Daten in jedem dieser Systeme identisch sein müssen. Das Szenario im Abschnitt 4.3 ist ein Beispiel dafür. Die zu erarbeitende Methode betrachtet dabei vorwiegend die Identifizierung der nicht identischen Projektdaten. Die Fehlerkorrektur wird nicht vorgenommen, sondern lediglich durch Interpretation der Fehler vorbereitet.

Zusammengefasst basiert die im Folgenden beschriebene Methode auf dem Prinzip des Datenvergleiches (database bashing). Außerdem werden Regeln (data edits) aufgestellt, die sowohl zur Fehlererkennung dienen, als auch das IT-Controlling operativ unterstützen können. Dazu werden alle redundant vorgehaltenen Projektdaten (siehe Abschnitt 2.3) aus jeder zu vergleichenden Datenquelle abgezogen und gegenübergestellt, wie
Abb. 3.2 schematisch darstellt. Resultat ist eine Menge von inkonsistenten Projektdaten, die in verschiedenen Systemen unterschiedliche Werte haben oder die gegen definierte Regeln verstoßen.

4 Fehlererkennung

4.1 Normierung einer vergleichbaren Projektstruktur

4.1.1 Entscheidung für XML

5 Im Jahre 1998 definierte das W3C zwar XML, jedoch basiert XML auf SGML und konnten deshalb aus früheren Erfahrungen lernen. „XML bietet 80 Prozent der Merkmale und Funktionen von SGML, aber nur 20 Prozent von dessen Komplexität.“ (Pardi (2000), S. 16.)

4.1.2 Rahmende Strukturelemente

ge oder in anderer Form, als der in Abb. 4.1 veranschaulichten, wird aus den genannten Gründen verzichtet. Die Abb. 4.1 überführt ebenfalls die Projektstrukturen in XML.

<table>
<thead>
<tr>
<th>Projektstrukturen</th>
<th>XML-Quelltext [Projekte.xml]</th>
</tr>
</thead>
</table>
| ![Diagram](image) | `<projekt id="A2C4" name="Projekt A">`
| | `<teilprojekte>` |
| | `<teilprojekt id="A2C4.T1"` |
| | `name="Teilprojekt 1">` |
| | `<arbeitspakete>` |
| | `<arbeitspaket id="A2C4.1.1"` |
| | `name="Arbeitspaket 1" />` |
| | `<arbeitspaket id="A2C4.1.2"` |
| | `name="Arbeitspaket 2" />` |
| | `</arbeitspakete>` |
| | `</teilprojekt>` |
| | `</teilprojekte>` |
| | `</projekt>` |
| ![Diagram](image) | `<projekt id="B3D5" name="Projekt B">`
| | `<arbeitspakete>` |
| | `<arbeitspaket id="B3D5.1"` |
| | `name="Arbeitspaket 1" />` |
| | `<arbeitspaket id="B3D5.2"` |
| | `name="Arbeitspaket 2" />` |
| | `</arbeitspakete>` |
| | `</projekt>` |

Abb. 4.1: Graphische Projektstrukturen und deren Umsetzung in XML

Das IT-Controlling betrachtet jedoch nicht nur ein Projekt, sondern viele. Somit müssen, zusätzlich zu den genannten Projektstrukturen, weitere Strukturelemente berück-

6 Vorgänge entsprechen einzelnen Tätigkeiten, deren Unterscheidung im Falle der Terminplanung mittels Netzplänen sinnvoll ist (vgl. Dräger (1998), S. 20.).

- Projekttart (z.B. Marketing-, Bau-, Produktinvestitions- und IT-Projekte),
- Bedeutung (strategische und operative Projekte),
- Zuständig (Bereichs-, Unternehmens- und Konzernprojekte),
- Dringlichkeit (Muss-, Soll- und Kann-Projekte) usw.

<table>
<thead>
<tr>
<th>Rahmenstruktur</th>
<th>XML-Quelltext [Proekte.xml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unternehmen</td>
<td><unternehmen></td>
</tr>
<tr>
<td>IT-Projektportfolio</td>
<td><projekportfolio id="IT" name="IT-Projektportfolio"></td>
</tr>
<tr>
<td>Projekt C</td>
<td><projekt id="A2C4" name="Projekt A" /></td>
</tr>
<tr>
<td></td>
<td><projekt id="B3D5" name="Projekt B" /></td>
</tr>
<tr>
<td></td>
<td><projekt id="C4E6" name="Projekt C" /></td>
</tr>
<tr>
<td></td>
<td></projekportfolio></td>
</tr>
<tr>
<td></td>
<td></unternehmen></td>
</tr>
</tbody>
</table>

Abb. 4.2: Rahmenstruktur und deren Umsetzung in XML
4.1.3 Integration der berichtenswerten Daten

Im vorigen Kapitel wurden die Grundlagen zur Zuordnung von Daten und Informationen in einer Menge von Projekten geschaffen. Nun gilt es Termine, Kosten und Leistungen in die Projektstruktur zu integrieren. Dabei werden die Datentypen, die projektinterne Zuordnung und die Granularität der Berichtsdaten festgelegt.

![Abb. 4.3: Einordnung von Terminen in Projekte](Projekte.xml)

\(^7\) Obligos sind offene Posten, die erst in der Zukunft zu Ist-Kosten führen, aber deren Höhe z.B. aufgrund von durchgeführten Bestellungen bereits bekannt ist (vgl. Dräger (1998), S 51.).
Betriebsprojekte Kosten verursachen und keine Erlöse erzielen. Abzubilden sind Kosten also in XML als decimal-Wert größer gleich null und auf zwei Nachkommastellen analog Abb. 4.4.

Abb. 4.4: Einordnung von Kosten in Projekte

Leistungen werden ähnlich den Kosten nur Arbeitspaketen zugeschrieben. In XML erfolgt dies gemäß Abb. 4.5. Der Wertebereich begrenzt sich dabei auf ganzzahlige Werte vom Typ unsignedByte im Intervall von 0 bis 100. Eine Leistung über 100% ist dabei nicht möglich, da bei Anpassung des Projektumfanges die geänderten Anforderungen wiederum 100% ergeben.

Abb. 4.5: Einordnung von Leistungen in Projekte

Die bereits in Abb. 4.1 und Abb. 4.2 gezeigten Projektstrukturen und die Einordnung der berichtenswerten Daten in diesem Abschnitt werden im Zuge des Beispiels in Abschnitt 4.3 noch einmal in Zusammenhang gebracht und mit Beispielwerten unterlegt.

4.2 Identifizierung inkonsistenter Daten

4.2.1 Datenvergleich mehrerer Systeme

- Wichtig ist, vorher zu kennzeichnen, welche der Systeme die Senke ist bzw. die Quellen sind. Also im IT-Berichtswesen welches XML-Dokument DW-Daten beinhaltet und welche Dokumente aus dessen Datenquellen stammen.

- Es wird immer nur eine Senke mit einer Quelle verglichen. Bei mehreren Senken sind diese nacheinander zu betrachten. Im Falle mehrerer Quellen müssen diese ebenfalls nacheinander der jeweiligen Senke gegenübergestellt werden.

- Des Weiteren müssen ID’s von verglichenen PSP-Elementen identisch sein. Im Falle doppelt vergebener ID’s in mehreren Projektportfolios muss die Projektart ebenfalls übereinstimmen.
Termine liegen als date vor, wodurch sich die Datumsangabe auf Tage (D), Monate (M) und Jahre (Y) im Format YYYY-MM-DD beschränkt. Abweichungen (Δt) sind demzufolge in der kleinsten Einheit Tage anzugeben.

\[Δt = vergleiche(t_S, t_Q) \quad , \Delta t \in \mathbb{Z} \]

Wenn ein Termin von Senke \(t_S \) zur Quelle \(t_Q \) abweicht, ist der Termin in der Senke nicht mehr aktuell. Abweichungen können sowohl positive, als auch negative sein. Positiv bedeutet, dass der Termin vorverlegt wurde, da die Senke den Termin später als die Quelle datiert. Negativ sind dementsprechend herausgeschobene Terminabweichungen.

Kosten sind in Form von reell wertigen Zahlen größer 0 definiert. Gebildet wird die Kostenabweichung (Δc) daher durch die Differenz von Senke \(c_S \) zu Quelle \(c_Q \). Obwohl in der Projektstruktur bereits definiert, ist darauf zu achten, dass die Werte nicht negativ sind. Anderenfalls würde dies die Interpretation der Werte verfälschen.

\[Δc = |c_S| - |c_Q| \quad , Δc \in \mathbb{R} \]

Leistungen berechnen sich analog den Kosten. Mit dem Unterschied, dass die ganzzahligen Werte im Intervall zwischen 0 und 100 liegen und Abweichungen im Intervall \([-100, 100]\) grundsätzlich möglich sind.

\[Δp = p_S - p_Q \quad , Δp \in \mathbb{Z}, -100 \leq Δp \leq 100 \]

Durch den Verzicht auf Planleistungen sind nur die Ist-Abweichungen zu berechnen. Ähnlich wie bei den Ist-Kosten steigen die Ist-Leistungen überwiegend an. Somit sind Leistungsabweichungen (Δp) ebenfalls negativ, wenn bei unveränderter Leistung \(p_S \) die in der Quelle erfasste Leistung \(p_Q \) steigt. Wenn, bedingt durch eine Erweiterung des Projektumfanges, das bisherige Leistungsverhältnis neu errechnet wird, kann die Ist-Leistung auch sinken und die Abweichung positiv werden.

Allerdings setzen alle genannten Erklärungen von Abweichungen eine korrekte und vollständige Datenerfassung und -selektion in bzw. eine fehlerfreie Datenübertragung
zwischen den Systemen voraus. Anderenfalls ist der Entstehungsgrund nicht so einfach zu erklären.

4.2.2 Regelbasierte Überprüfung einzelner Systeme

Mit Hilfe von Regeln lassen sich Widersprüche innerhalb der Daten eines Systems auffinden. Es sind ausschließlich die Quellen zu betrachten. Da die Daten in der Senke und den Quellen identisch sein müssen, bedarf es keiner Prüfung der Senke. Außerdem überprüfen die Regeln fehlerhafte Daten der Senke, wenn die Daten nicht identisch sind. Die daraus generierten Informationen wären also nicht aussagekräftig.

Tab. 4.1: Definierte Zusammenhänge zwischen Terminen, Kosten und Leistungen

<table>
<thead>
<tr>
<th>Regel</th>
<th>Termine</th>
<th>Kosten</th>
<th>Leist.</th>
<th>Fragestellung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start</td>
<td>End</td>
<td>Start</td>
<td>End</td>
</tr>
<tr>
<td>R1</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>R5</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>R8</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>R9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Im Vordergrund steht aber weniger die Ausgestaltung der Regeln, sondern deren Einbeziehung in die Auswertung. Zum weiteren Vorgehen wird daher lediglich die Anzahl der Widersprüche der genannten Regeln ausgewertet.
4.2.3 Dokumentation der Inkonsistenzen

Die Struktur des Ergebnisdokumentes teilt sich entsprechend den vorherigen Abschnitten in zwei Teile: den datenvergleich und die regelpruefung. Deren Durchführung ist unabhängig von einander und kann sowohl allein, als auch zusammen, dann durch inkonsistenzen umschlossen, in XML dokumentiert werden. Der Quelltext in Abb. 4.6 zeigt die erwähnten und weitere Tags, die anschließend erläutert werden.

wie Abb. 4.6 zu entnehmen ist, werden unter datenvergleich den Senken ihre Quellen untergeordnet. Innerhalb eines Vergleiches zwischen einer Senke und einer Quelle werden die Abweichungen nach termine, kosten oder leistungen getrennt. Der jeweilige Inhalt bzw. Wertebereich des XML-Tags abweichung unterscheidet sich dabei, wie in Abschnitt 4.2.1 beschrieben. Mittels Attributen werden den Abweichungen folgende wichtige Informationen beigefügt:

- typ: Dieses Attribut hinterlegt die Information, ob die Abweichung im Ist oder im Plan vorliegt. Erlaubte Attributwerte sind demzufolge ‚Ist‘, ‚Obligo‘ oder eine Planversion, die den Planwert genauer benennt. Zu beachten ist, das Leistungsabwei-

4.3 Fallbeispiel

Gegebenheiten

termine und -kosten, die es ans ERP überträgt. Das DW erhält deshalb seine Plandaten indirekt aus dem PPM über das ERP. Abb. 4.7 verschafft einen Überblick über die Ver- netzungen.

Abb. 4.7: Vernetzung der Systemen im Fallbeispiel

Aufgabe

Vorgehen

Zu allererst werden die einzelnen XML-Exporte für das DW, das ERP und das PPM erstellt. Die XML-Exportdatei des DW ist in Form des Quelltextes dem Anhang A bei-

Nach dem Feststellen der Abweichungen gilt es die Quellen auf Widersprüche zu untersuchen. Im Tool sind dazu die in Abschnitt 4.2.2 aufgestellten 10 Regeln hinterlegt. Das Tool überprüft die Quelldateien danach und speichert die Funde ebenfalls in der Datei \textit{Inkonsistenzen.xml}, aber unter dem Tag \textit{regelpruefung}. In der Tabelle von Anhang F werden die Widersprüche in den PSP-Elementen durch Ampeln signalisiert.

\textit{Ergebnisse \& Interpretationen}

Es wurden durch Vergleich B 10 und durch Vergleich C 7 Abweichungen identifiziert. Betroffen sind davon sowohl Termine, Kosten und Leistungen, als auch Ist- und Planwerte. Nach abschließender Betrachtung erklären sich diese folgendermaßen:

- Projekt B musste 2 Tage früher abgeschlossen werden, wodurch eingeplante Arbeitsstunden im Wert von 112,55€ nicht verbraucht wurden.
- Im Projekt C wurde der Projektstart einen Monat nach hinten verschoben.
• Festzustellen ist ebenfalls, dass zwischen ERP und PPM keine Abweichungen vorliegen, da sämtliche Abweichungen bei den Planwerten zwischen DW und ERP bzw. DW und PPM in identischer Höhe vorliegen.

Außerdem wurden insgesamt 17 Widersprüche entdeckt. Davon betreffen 15 das ERP und 2 das PPM. Die Regeln 3,4,5,6 und 8 blieben jeweils ohne Fund. Die anderen Regeln ermöglichen nach Begutachtung der Daten folgende Aussagen:

• Regel 7 entdeckte, dass das Ist+Obligo im selben Arbeitspaket A2C4.2.1 dessen Planbudget um 138,10€ überschreitet. Davon ist auch das übergeordnete Teilprojekt 2 betroffen.

• Regel 9 macht deutlich, dass Projekt A gemäß seinem vergangenen Endtermin eine Leistung von 100% aufweisen müsste. Aber wie durch Regel 1 bekannt, liegt womöglich beim tatsächlichen Endtermin ein Fehler vor. Würde dieser Fehler entsprechend der Vermutung korrigiert, fände Regel 9 keinen erneuten Widerspruch, da der Termin in der Zukunft läge.

• Regel 10 zeigt, dass im abgeschlossenen Arbeitspaket A2C4.1.2 ein Budget in Höhe von 280€ ungenutzt blieb. Dies könnte zur Kompensation der bestehenden Mehrausgaben im Teilprojekt 2 (siehe Regel 7) genutzt werden. Dann verbliebe noch eine Reserve von 141,90€ für möglicherweise weitere Mehrausgaben im Projekt A.

4.4 Unterstützende Diagramme

Diagramme für den Datenvergleich

Abb. 4.8: Graphische Auswertung der Abweichungen

Der Drill-down erfolgt anschließend nach entweder Terminen, Kosten oder Leistungen. Dieser Unterabschnitt konzentriert sich auf Kosten. Termine und Leistungen sind gleichfalls darstellbar, aber folgend nicht getan.
Auszuwerten ist das Ergebnisdokument nach negativen (linke Diagrammhälfte) und positiven (rechte Diagrammhälfte) Abweichungen. Dies ist notwendig, weil sich Abweichungen zu null summieren können. Wie Projekt A in Abb. 4.9 zeigt, ergibt die Summe all seiner Kostenabweichungen (zwischen den Diagrammhälften) null. Dies tritt auf, weil im Fallbeispiel eine projektinterne Budgetumverteilung vom TP1 auf das TP2 vorgenommen wurde. Für Statusberichte, die die Projektkosten insgesamt über alle AP’s betrachten, bleibt das Budget von Projekt A unverändert. Anderenfalls täusche dies im Entscheidungsprozess falsche bzw. nicht aktuelle Tatsachen vor, denn dem TP2 steht laut ERP ein höheres Budget zu, als im Bericht stände.

Abb. 4.9: Graphische Auswertung der Kostenabweichungen (mit Drill-down)

Ausgangspunkt nach Ebene 1 (Abb. 4.8) ist stets das gesamte IT-Projektportfolio. Dazu werden die Werte aller abweichung-Tags unter kosten summiert und die Gruppierung aus Ebene 1 beibehalten. Das Anliegen dabei ist nun, einen Überblick über alle Kostenabweichungen samt deren Höhe zu erhalten. Liegen auf dieser Ebene keine Abweichungen vor, gilt dies auch für alle weiteren Ebenen. Für detailliertere Informationen (Ebene 3) wird in Abb. 4.9 anschließend ein Wert des Attributes typ (hier die Plankosten in der Version PL1) fixiert. Dies ermöglicht die Detaillierung nach Projekten. Die Gruppierung erfolgt dann über die Codierung der pspID. Zur Betrachtung einzelner Projekte lässt sich die Projekt-ID ebenfalls fixieren. Letztendlich, abhängig
von der Projektstruktur, kann so mindestens noch nach Teilprojekten und/oder Arbeitspaketen detailliert werden. In Abb. 4.9 wurde dementsprechend im Drill-down von Ebene 3 auf Ebene 4 die Teilprojekte übersprungen.

Diagramme für die regelbasierte Überprüfung

![Abb. 4.10: Graphische Auswertung der Widersprüche](image)

Das linke Netzdiagramm der Abb. 4.10 zeigt wie viele Widersprüche, nach Regeln sortiert, gefunden wurden. Indessen leitet das rechte Diagramm aus den Regeldefinitionen ab, welche Werte widersprüchlich sind und bestimmt die zugehörige Widerspruchsanzahl. Dies erfolgt mit Hilfe von Tab. 4.1. Wenn also tatsächliche Starttermine von Regel 1, 3, 5 und 8 überprüft wurden und diese Regeln zwei, keine, keine bzw. keine Wider-
sprüche fanden, sind diese Termine in zwei Widersprüche verwickelt. Tatsächliche End-
termine sind demnach möglicherweise fünfmal widersprüchlich, da die Regeln 1, 6 und
9 zwei, keine bzw. drei Widersprüche entdeckten.

Die Darstellung der Widersprüche über die Anzahl lässt zwar keinen direkten Rück-
schluss auf die Qualität von beispielsweise Terminen zu, aber sie kann beim priorisieren
von Verbesserungen hilfreich sein. Denn gemäß Tab. 4.1 wird zwar der tatsächliche
Starttermin häufiger für die Regeln herangezogen, aber Abb. 4.10 zeigt, dass der ge-
plante Endtermin häufiger in Widersprüchen verwickelt ist. Deshalb könnten Korrektur-
oder Präventivmaßnahmen dort eventuell einen größeren Nutzen bringen. Eindeutiger
ist, dass die Diagramme auf die Wirksamkeit oder das Fehlen von Integritätsregeln
schließen lassen. Wird unter der Prämisse, dass der Projektstart vor dessen Ende erfolgt,
der Starttermin in das Endterminfeld und andersherum eingetragen, ist vom System eine
Fehlermeldung auszugeben, da Start später als das Ende wäre. Gibt es diese Integritäts-
regeln in der Quelle nicht, würde Regel 1 oder 2 aus Tab. 4.1 diesen Widerspruch auf-
decken und eine mögliche Forderung danach unterstreichen.
5 Beitrag zur Qualitätsverbesserung

Die Wertschöpfung wird zwar nicht zwangsläufig verbessert, aber zu mindestens grundlegend gesichert. Liegen für den endgültigen Bericht keine Inkonsistenzen sowohl in als auch zwischen den Systemen vor, ist die Aussagekraft gegeben, die für die Entscheidungsunterstützung notwendig ist. Wobei der Maßstab beim Vergleich auf der Qualität der Ursprungsdaten beruht. Sicherlich wird der Maßstab versucht mit Hilfe der Regelprüfung anzuheben, aber eine 100%ige Identifizierung von Widersprüchen ist mit hohem Aufwand bei der Ausarbeitung von Regeln verbunden. Denn wie bereits im Fallbeispiel verdeutlicht, entdeckten die definierten Regeln nicht jeden Fehler (Terminfehler beim Projekt A).

Auch das Ansehen der Anwendungssysteme kann durch eine fortlaufende Durchführung mit anschließender Fehlerkorrektur nachweisbar gesteigert werden, geachtet dessen, dass in der Vergangenheit die Anzahl der identifizierten Inkonsistenzen sank; bis hin schließlich zur Feststellung keiner Inkonsistenzen. Gleiches trifft für das Ansehen der Datenübertragungen ins Berichtssystem zu. Was sich wiederum auf das Berichtssystem positiv auswirkt. Die Verbesserung tritt dabei durch das systematische und objektive vor Augen führen der IQ über einen bestimmten Zeitraum ein.

Eng ans Ansehen ist die Glaubwürdigkeit geknüpft. Dadurch, dass das Ansehen steigt, steigt auch zwangsläufig das Vertrauen in die Berichte und somit deren Glaubwürdigkeit.
6 Zusammenfassung und Ausblick

Im IT-Berichtswesen geht es um eine Vielzahl von Projektdaten, die zur Vorbereitung von Entscheidungen in Berichten zusammengefasst werden. Für Entscheidungen ist allerdings die Qualität der Informationen in den Berichten ausschlaggebend. Die vorliegende Arbeit stellte deshalb eine Methode vor, um Daten berichtsvorbereitend auf ihre Qualität hin zu untersuchen. Dafür wurden zuerst vier Fragen geklärt:

Im Angesicht der Implementierung sind Anpassungen möglich bis nötig. Zunächst sind gegebenenfalls umfassendere Projektstrukturen als den vorgestellten umzusetzen. Dabei könnten z.B. die angesprochenen Programme, Vorgänger-Nachfolger-Beziehungen oder Orientierungen bezüglich Objekten, Funktionen und Abläufen zum tragen kommen. Es sind auch andere Projektarten als IT-Projekte umsetzbar, die z.B. die Berücksichtigung
Literaturverzeichnis

Anhang
A Projekte.xml - Die Projektstruktur

<?xml version="1.0" encoding="utf-8"?>

<unternehmen>

<projektportfolio id="IT" name="IT-Projektportfolio">

 <!-- laufendes Projekt -->

 <projekt id="A2C4" name="Projekt A">

 <termine>
 <ist><starttermin>2008-03-17</starttermin>
 <endtermin>2008-10-10</endtermin></ist>
 <plan version="PL1"><starttermin>2008-03-17</starttermin>
 <endtermin>2008-10-10</endtermin></plan>
 </termine>

 <teilprojekte>

 <teilprojekt id="A2C4.1" name="Teilprojekt 1">

 <termine>
 <ist><starttermin>2008-03-17</starttermin>
 <endtermin>2008-10-10</endtermin></ist>
 <plan version="PL1"><starttermin>2008-03-17</starttermin>
 <endtermin>2008-10-10</endtermin></plan>
 </termine>

 <arbeitspakete>

 <arbeitspaket id="A2C4.1.1" name="Arbeitspaket 1">

 <termine>
 <ist><starttermin>2008-03-17</starttermin>
 <endtermin>2008-06-19</endtermin></ist>
 <plan version="PL1"><starttermin>2008-03-17</starttermin>
 <endtermin>2008-06-19</endtermin></plan>
 </termine>

 <kosten>
 <planung><plan version="PL1">7262.90</plan></planung>
 <kontierung><ist>7182.90</ist><obligo>0</obligo></kontierung>
 </kosten>

 <leistungen><ist>100</ist></leistungen>
 </arbeitspaket>

 <arbeitspaket id="A2C4.1.2" name="Arbeitspaket 2">

 <termine>
 <ist><starttermin>2008-06-20</starttermin>
 <endtermin>2008-10-10</endtermin></ist>
 <plan version="PL1"><starttermin>2008-06-20</starttermin>
 <endtermin>2008-10-10</endtermin></plan>
 </termine>

 <kosten>
 <planung><plan version="PL1">8536.20</plan></planung>
 <kontierung><ist>8136.20</ist><obligo>0</obligo></kontierung>
 </kosten>

 <leistungen><ist>100</ist></leistungen>
 </arbeitspaket>
 </arbeitspakete>
 </teilprojekt>

 <teilprojekt id="A2C4.2" name="Teilprojekt 2">

 <termine>
 <ist><starttermin>2008-10-11</starttermin>
 <endtermin>2008-01-16</endtermin></ist>
 <plan version="PL1"><starttermin>2008-10-11</starttermin>
 <endtermin>2008-01-16</endtermin></plan>
 </termine>
 </teilprojekt>
 </teilprojekte>
 </projekt>
</projektportfolio>
</unternehmen>
<arbeitspakete>
 <arbeitspaket id="A2C4.2.1" name="Arbeitspaket 1">
 <termine>
 <ist><starttermin>2008-10-11</starttermin><endtermin>2008-01-16</endtermin></ist>
 <plan version="PL1"><starttermin>2008-10-11</starttermin><endtermin>2008-01-16</endtermin></plan>
 </termine>
 <kosten>
 <planung><plan version="PL1">7175.20</plan></planung>
 <kontierung><ist>5213.54</ist><obligo>2269.76</obligo></kontierung>
 </kosten>
 <leistungen><ist>75</ist></leistungen>
 </arbeitspaket>
</arbeitspakete>
</teilprojekt>
</teilprojekte>
</projekt>

<!-- abgeschlossenes Projekt -->

<projekt id="B3D5" name="Projekt B">
 <termine>
 <ist><starttermin>2008-02-18</starttermin><endtermin>2008-08-29</endtermin></ist>
 <plan version="PL1"><starttermin>2008-02-18</starttermin><endtermin>2008-08-31</endtermin></plan>
 </termine>
 <arbeitspakete>
 <arbeitspaket id="B3D5.1" name="Arbeitspaket 1">
 <termine>
 <ist><starttermin>2008-02-18</starttermin><endtermin>2008-02-29</endtermin></ist>
 <plan version="PL1"><starttermin>2008-02-18</starttermin><endtermin>2008-02-29</endtermin></plan>
 </termine>
 <kosten>
 <planung><plan version="PL1">309.52</plan></planung>
 <kontierung><ist>309.52</ist><obligo>0</obligo></kontierung>
 </kosten>
 <leistungen><ist>100</ist></leistungen>
 </arbeitspaket>
 <arbeitspaket id="B3D5.2" name="Arbeitspaket 2">
 <termine>
 <ist><starttermin>2008-02-29</starttermin><endtermin>2008-08-15</endtermin></ist>
 <plan version="PL1"><starttermin>2008-02-29</starttermin><endtermin>2008-08-15</endtermin></plan>
 </termine>
 <kosten>
 <planung><plan version="PL1">3590.48</plan></planung>
 <kontierung><ist>3590.48</ist><obligo>0</obligo></kontierung>
 </kosten>
 <leistungen><ist>100</ist></leistungen>
 </arbeitspaket>
 <arbeitspaket id="B3D5.3" name="Arbeitspaket 3">
 <termine>
 <ist><starttermin>2008-08-16</starttermin><endtermin>2008-08-29</endtermin></ist>
 <plan version="PL1"><starttermin>2008-08-16</starttermin><endtermin>2008-08-31</endtermin></plan>
 </termine>
 </arbeitspaket>
 </arbeitspakete>
</teilprojekt>
</teilprojekte>
</projekt>
<!-- nicht begonnenes Projekt -->
<projekt id="C4E6" name="Projekt C">
<termine>
<plan version="PL1"><starttermin>2009-02-01</starttermin>
<endtermin>2009-03-31</endtermin></plan>
</termine>
<arbeitspakete>
<arbeitspaket id="C4E6.1" name="Arbeitspaket 1">
<termine>
<plan version="PL1"><starttermin>2009-02-01</starttermin>
<endtermin>2009-03-31</endtermin></plan>
</termine>
<kosten>
<planung><plan version="PL1">1200</plan></planung>
</kosten>
</arbeitspaket>
</arbeitspakete>
</projekt>
</projektportfolio>
</unternehmen>
B Projekte.xsd - Formalisierung der Projektstruktur

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <!-- Unternehmen -->
 <xs:element name="unternehmen"><xs:complexType><xs:sequence>
 <!-- Projektportfolio -->
 <xs:element maxOccurs="unbounded" name="projektportfolio">
 <xs:complexType><xs:sequence>
 <!-- Projekte -->
 <xs:element maxOccurs="unbounded" name="projekt">
 <xs:complexType><xs:sequence>
 <xs:element minOccurs="0" ref="termine" />
 <xs:choice>
 <!-- entweder in Teilprojekte unterteilt -->
 <xs:element name="teilprojekte">
 <xs:complexType><xs:sequence>
 <xs:element minOccurs="2" maxOccurs="unbounded" name="teilprojekt">
 <xs:complexType><xs:sequence>
 <xs:element minOccurs="0" ref="termine" />
 <xs:element ref="arbeitspakete" />
 </xs:sequence>
 <xs:attribute name="id" type="teilprojektID" use="required" />
 <xs:attribute ref="name" use="required" />
 </xs:complexType></xs:element>
 </xs:sequence></xs:complexType></xs:element>
 </xs:choice>
 <!-- oder nur in Arbeitspakete -->
 <xs:element ref="arbeitspakete" />
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="id" type="projektID" use="required" />
 <xs:attribute ref="name" use="optional" />
 </xs:complexType></xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="projektart" use="required" />
 <xs:attribute ref="name" use="optional" />
 </xs:complexType></xs:element>
 </xs:sequence></xs:complexType></xs:element>
 <!-- Arbeitspakete -->
 <xs:element name="arbeitspakete"><xs:complexType><xs:sequence>
 <!-- Arbeitspaket -->
 <xs:element maxOccurs="unbounded" name="arbeitspaket">
 <xs:complexType><xs:sequence>
 <!-- Termine -->
 <xs:element minOccurs="0" ref="termine" />
 <xs:sequence>
 <xs:attribute name="id" type="projektID" use="required" />
 <xs:attribute ref="name" use="required" />
 </xs:sequence>
 </xs:complexType></xs:element>
 </xs:sequence></xs:complexType></xs:element>
 <xs:attribute name="id" type="projektart" use="required" />
 <xs:attribute ref="name" use="optional" />
 </xs:complexType></xs:element>

 <!-- Termine -->
 <xs:element minOccurs="0" ref="termine" />

 <!-- Kosten -->
 <xs:element name="kosten"><xs:complexType><xs:sequence>
 <!-- Plankosten -->
 </xs:complexType></xs:element>
</xs:schema>
<xs:element name="planung">
 <xs:complexType>
 <xs:sequence>
 <!-- Ist-Kosten -->
 <xs:element minOccurs="0" name="kontierung">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ist" type="waehrung" />
 <xs:element name="obligo" type="waehrung" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<!-- Leistungen -->
<xs:element minOccurs="0" name="leistungen">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ist" type="prozent" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

<!-- Termine -->
<xs:element name="termine">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="ist" type="zeitraum" />
 <xs:element maxOccurs="unbounded" name="plan">
 <xs:complexType mixed="false">
 <xs:extension base="zeitraum">
 <xs:attribute ref="version" use="required" />
 </xs:extension>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:complexType name="zeitraum">
 <xs:sequence>
 <xs:element name="starttermin" type="datum" />
 <xs:element name="endtermin" type="datum" />
 </xs:sequence>
</xs:complexType>

<!-- Wertebereiche für Projektdaten -->

<!-- für Leistungen -->
<xs:simpleType name="prozent">
 <xs:restriction base="xs:unsignedByte">
 <xs:minInclusive value="0" /> <xs:maxInclusive value="100" />
 <xs:fractionDigits value="0" />
 </xs:restriction>
</xs:simpleType>

<!-- für Kosten -->
<xs:simpleType name="waehrung">
 <xs:restriction base="xs:decimal">
 <xs:minInclusive value="0" />
 </xs:restriction>
</xs:simpleType>
<xs:complexType name="datum">
 <xs:simpleContent>
 <xs:extension base="xs:date">
 <xs:attributeName name="ipa" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
</xs:schema>

<!-- für Termine -->
<xs:complexType name="datum">
 <xs:simpleContent>
 <xs:extension base="xs:date">
 <xs:attributeName name="ipa" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
</xs:schema>

<!-- ID's der Projektportfolios -->
<xs:complexType name="projektart">
 <xs:restriction base="xs:ID">
 <xs:enumeration value="Alle"/>
 <xs:enumeration value="IT"/>
 <xs:enumeration value="Bau"/>
 <xs:enumeration value="Marketing"/>
 <xs:enumeration value="ProdInvest"/>
 </xs:restriction>
</xs:schema>

<!-- Codierung der PSP-ID’s -->
<xs:complexType name="projektID">
 <xs:restriction base="xs:ID">
 <xs:length value="4"/>
 <xs:pattern value="[A-Z]+[0-9]*[A-Z]*[0-9]*"/>
 </xs:restriction>
</xs:schema>

<!-- von Teilprojekten -->
<xs:complexType name="teilprojektID">
 <xs:restriction base="xs:ID">
 <xs:minLength value="6"/>
 <xs:pattern value="[A-Z]+[0-9]*[A-Z]*[0-9]*\.\[0-9]+"/>
 </xs:restriction>
</xs:schema>

<!-- von Arbeitspaketen -->
<xs:complexType name="arbeitspaketID">
 <xs:restriction base="xs:ID">
 <xs:minLength value="6"/>
 <xs:pattern value="[A-Z]+[0-9]*[A-Z]*[0-9]*\.\[0-9]+\.[0-9]*"/>
 </xs:restriction>
</xs:schema>

<!-- Attribut für die Planversion -->
<xs:schema attribute="version">
 <xs:complexType>
 <xs:restriction base="xs:string">
 <xs:length value="3"/>
 <xs:enumeration value="URP"/>
 <xs:enumeration value="PL1"/>
 </xs:restriction>
 </xs:complexType>
</xs:schema>

<!-- Attribut für die PSP-Namen -->
<xs:schema attribute="name">
 <xs:complexType>
 <xs:restriction base="xs:token">
 <xs:WhiteSpace value="collapse"/>
 </xs:restriction>
 </xs:complexType>
</xs:schema>
C Inkonsistenzen.xml - Das Ergebnisdokument

<?xml version="1.0" encoding="utf-8"?>
<inkonsistenzen>

<datenvergleich><senke name="DW">
 <quelle name="ERP">

 <termine>
 <abweichung typ="PL1" zeitpunkt="ende" pspID="B3D5" pspArt="projekt">2</abweichung>
 <abweichung typ="PL1" zeitpunkt="ende" pspID="B3D5.3" pspArt="arbeitspaket">2</abweichung>
 <abweichung typ="PL1" zeitpunkt="start" pspID="C4E6" pspArt="projekt">-28</abweichung>
 </termine>

 <kosten>
 <abweichung typ="PL1" pspID="A2C4.1.1" pspArt="arbeitspaket">80</abweichung>
 <abweichung typ="PL1" pspID="A2C4.1.2" pspArt="arbeitspaket">120</abweichung>
 <abweichung typ="PL1" pspID="A2C4.2.1" pspArt="arbeitspaket">-200</abweichung>
 <abweichung typ="ist" pspID="A2C42.1" pspArt="arbeitspaket">-158.62</abweichung>
 <abweichung typ="obligo" pspID="A2C42.1" pspArt="arbeitspaket">158.62</abweichung>
 <abweichung typ="PL1" pspID="B3D5.3" pspArt="arbeitspaket">112.55</abweichung>
 </kosten>

 <leistungen>
 <abweichung typ="ist" pspID="A2C4.2.1" pspArt="arbeitspaket">-15</abweichung>
 </leistungen>

 </quelle>
</senke>

<senke name="PPM">

 <quelle name="ERP">

 <termine>
 <abweichung typ="PL1" zeitpunkt="ende" pspID="B3D5" pspArt="projekt">2</abweichung>
 <abweichung typ="PL1" zeitpunkt="ende" pspID="B3D5.3" pspArt="arbeitspaket">2</abweichung>
 <abweichung typ="PL1" zeitpunkt="start" pspID="C4E6" pspArt="projekt">-28</abweichung>
 </termine>

 <kosten>
 <abweichung typ="PL1" pspID="A2C4.1.1" pspArt="arbeitspaket">80</abweichung>
 <abweichung typ="PL1" pspID="A2C4.1.2" pspArt="arbeitspaket">120</abweichung>
 <abweichung typ="PL1" pspID="A2C4.2.1" pspArt="arbeitspaket">-200</abweichung>
 <abweichung typ="PL1" pspID="B3D5.3" pspArt="arbeitspaket">112.55</abweichung>
 </kosten>

 </quelle>
</senke>
</datenvergleich>
<regelpruefung><!--15 Widersprüche-->
<quelle name="ERP"> <!--13 Widersprüche-->
<regel id="R1">
 <widerspruch pspID="A2C4.2" pspArt="teilprojekt" />
 <widerspruch pspID="A2C4.2.1" pspArt="arbeitspaket" />
</regel>
<regel id="R2">
 <widerspruch pspID="A2C4.2" pspArt="teilprojekt" />
 <widerspruch pspID="A2C4.2.1" pspArt="arbeitspaket" />
</regel>
<regel id="R7">
 <widerspruch pspID="A2C4.2" pspArt="teilprojekt" />
 <widerspruch pspID="A2C4.2.1" pspArt="arbeitspaket" />
</regel>
<regel id="R9">
 <widerspruch pspID="A2C4" pspArt="projekt" />
 <widerspruch pspID="A2C4.2" pspArt="teilprojekt" />
 <widerspruch pspID="A2C4.2.1" pspArt="arbeitspaket" />
</regel>
<regel id="R10">
 <widerspruch pspID="A2C4.1" pspArt="teilprojekt" />
 <widerspruch pspID="A2C4.1.2" pspArt="arbeitspaket" />
</regel>
</quelle>

<quelle name="PPM"> <!--2 Widersprüche-->
<regel id="R2">
 <widerspruch pspID="A2C4.2" pspArt="teilprojekt" />
 <widerspruch pspID="A2C4.2.1" pspArt="arbeitspaket" />
</regel>
</quelle>

</regelpruefung>
</inkonsistenzen>
D Inkonsistenzen.xsd - Formalisierung des Ergebnisdokumentes

```xml
<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- Inkonsistenzen -->
<xs:element name="inkonsistenzen">
  <xs:complexType>
    <xs:sequence>
      <xs:element ref="datenvergleich" />
      <xs:element ref="regelpruefung" />
    </xs:sequence>
  </xs:complexType>
</xs:element>

<!-- Datenvergleich -->
<xs:element name="datenvergleich">
  <xs:complexType>
    <xs:sequence>
      <!-- Senke -->
      <xs:element maxOccurs="unbounded" name="senke">
        <xs:complexType>
          <xs:sequence>
            <!-- Quelle -->
            <xs:element maxOccurs="unbounded" name="quelle">
              <xs:complexType>
                <xs:sequence>
                  <!-- Termineabweichungen -->
                  <xs:element minOccurs="0" name="termine">
                    <xs:complexType>
                      <xs:simpleContent>
                        <xs:extension base="terminAbw">
                          <xs:attribute name="typ" type="termintypen" use="required" />
                          <xs:attribute name="zeitpunkt" type="zeitpunkte" use="required" />
                          <xs:attributeGroup ref="psp_ident" />
                        </xs:extension>
                      </xs:complexType>
                    </xs:element>
                  </xs:sequence>
                </xs:complexType>
              </xs:element>
            </xs:sequence>
          </xs:complexType>
        </xs:element>
      </xs:sequence>
    </xs:complexType>
  </xs:element>

<!-- Kostenabweichungen -->
<xs:element minOccurs="0" name="kosten">
  <xs:complexType>
    <xs:sequence>
      <xs:element minOccurs="0" name="abweichung">
        <xs:complexType>
          <xs:extension base="kostenAbw">
            <xs:attribute name="typ" type="kostentypen" use="required" />
            <xs:attributeGroup ref="ap_ident" />
          </xs:extension>
        </xs:element>
      </xs:sequence>
    </xs:complexType>
  </xs:element>

<!-- Leistungsabweichungen -->
<xs:element minOccurs="0" name="leistungen">
  <xs:complexType>
    <xs:sequence>
      <xs:element minOccurs="0" name="abweichung">
        <xs:complexType>
          <xs:extension base="leistungAbw">
            <xs:attribute name="typ" type="leistungtypen" use="required" />
            <xs:attributeGroup ref="ap_ident" />
          </xs:extension>
        </xs:element>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:sequence></xs:complexType></xs:element>
</xs:schema>
```
<!-- Regelprüfung -->
<xs:element name="regelpruefung">
 <xs:complexType>
 <xs:sequence>
 <!-- Quelle -->
 <xs:element maxOccurs="unbounded" name="quelle">
 <xs:complexType>
 <xs:sequence>
 <!-- Regeln inkl. Widersprüche -->
 <xs:element maxOccurs="unbounded" name="regel">
 <xs:complexType>
 <xs:complexContent mixed="false">
 <xs:extension base="regelwiderspruch">
 <xs:attributeGroup ref="psp_ident" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:attribute name="id" type="regeltypen" use="required" />
 </xs:element>
 </xs:sequence>
 <xs:attribute ref="name" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<!-- Attribut für Systemnamen -->
<xs:attribute name="name" type="systemType" />
<xs:simpleType name="systemType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="DW" />
 <xs:enumeration value="ERP" />
 <xs:enumeration value="PPM" />
 </xs:restriction>
</xs:simpleType>

<!-- Attributgruppe zur Beschreibung eines PSP-Elementes -->
<xs:attributeGroup name="psp_ident">
 <xs:attribute name="pspID" type="pspID" use="required" />
 <xs:attribute name="pspArt" type="pspArten" use="required" />
</xs:attributeGroup>

<!-- Attributgruppe zur Beschreibung eines Arbeitspaketes -->
<xs:attributeGroup name="ap_ident">
 <xs:attribute name="pspID" use="required" />
 <xs:attribute name="pspArt" type="pspArten" use="required" />
</xs:attributeGroup>
<!-- Mindestlänge für PSP-ID's -->
<xs:simpleType name="pspID"><xs:restriction base="xs:string">
 <xs:minLength value="3" /></xs:restriction></xs:simpleType>

<!-- Namen von PSP-Elementen -->
<xs:simpleType name="pspArten">
 <xs:restriction base="xs:string">
 <xs:enumeration value="programm" />
 <xs:enumeration value="projekt" />
 <xs:enumeration value="teilprojekt" />
 <xs:enumeration value="arbeitspaket" /></xs:restriction></xs:simpleType>

<!-- Wertebereich der Abweichungen -->
<xs:simpleType name="terminAbw">
 <xs:restriction base="xs:int" />
</xs:simpleType>

<xs:simpleType name="kostenAbw">
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits value="2" /></xs:restriction></xs:simpleType>

<xs:simpleType name="leistungAbw">
 <xs:restriction base="xs:byte">
 <xs:minInclusive value="-100" /><xs:maxInclusive value="100" />
 <xs:fractionDigits value="0" /></xs:restriction></xs:simpleType>

<!-- Werte für das "typ"-Attribut -->
<!-- Supertype: Ist- und Planwerte (nach Planversionen) -->
<xs:simpleType name="berichtswerte">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ist" /><xs:enumeration value="URP" />
 <xs:enumeration value="PL1" /></xs:restriction></xs:simpleType>

<!-- Termine -->
<xs:simpleType name="termintypen">
 <xs:restriction base="berichtswerte" />
</xs:simpleType>

<!-- Kosten: Erweiterung des Supertype (Obligo) -->
<xs:simpleType name="kostentypen">
 <xs:union memberTypes="berichtswerte">
 <xs:simpleType><xs:restriction base="xs:string">
 <xs:enumeration value="obligo" /></xs:restriction></xs:simpleType>
 </xs:union>
</xs:simpleType>

<!-- Leistungen: Restriktion von SUPER (nur Ist) -->
<xs:simpleType name="leistungtypen">
 <xs:restriction base="berichtswerte">
 <xs:enumeration value="ist" /></xs:restriction></xs:simpleType>

<!-- Werte für das "zeitpunkt"-Attribut -->
<xs:simpleType name="zeitpunkte">
 <xs:restriction base="xs:string"><xs:enumeration value="start" />
 <xs:enumeration value="ende" /></xs:restriction></xs:simpleType>
<!-- Werte für Regel-ID's -->
<xs:simpleType name="regeltypen">
 <xs:restriction base="xs:token">
 <xs:pattern value="R\([0-9]|10\)" /></xs:restriction>
</xs:simpleType>

<!-- Wertebereich der Widersprüche (Platzhalter) -->
<xs:complexType name="regelwiderspruch">
 <xs:complexContent mixed="false">
 <xs:extension base="xs:anyType" /></xs:complexContent>
</xs:complexType>

</xs:schema>
<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>System</th>
<th>Termine</th>
<th>Kosten</th>
<th>Leistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>start-</td>
<td>Ist in summe</td>
<td>PL1 in summe</td>
</tr>
<tr>
<td>IT-Projektportfolio</td>
<td>IT</td>
<td>ESP</td>
<td>17.03.2006 0</td>
<td>10.10.2006 0</td>
<td>10.10.2006 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DW</td>
<td>17.03.2006 0</td>
<td>10.10.2006 0</td>
<td>10.10.2006 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DMR</td>
<td>17.03.2006 0</td>
<td>10.10.2006 0</td>
<td>10.10.2006 0</td>
</tr>
<tr>
<td>Projektkern 1</td>
<td>A2C4</td>
<td>ESP</td>
<td>17.03.2006 0</td>
<td>10.10.2006 0</td>
<td>10.10.2006 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DW</td>
<td>17.03.2006 0</td>
<td>10.10.2006 0</td>
<td>10.10.2006 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PPRM</td>
<td>17.03.2006 0</td>
<td>10.10.2006 0</td>
<td>10.10.2006 0</td>
</tr>
<tr>
<td>Arbeitspaket 1</td>
<td>A2C4.1</td>
<td>ESP</td>
<td>17.03.2006 0</td>
<td>19.06.2006 0</td>
<td>19.06.2006 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DW</td>
<td>17.03.2006 0</td>
<td>19.06.2006 0</td>
<td>19.06.2006 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DMR</td>
<td>17.03.2006 0</td>
<td>19.06.2006 0</td>
<td>19.06.2006 0</td>
</tr>
<tr>
<td>Arbeitspaket 2</td>
<td>A2C4.1</td>
<td>ESP</td>
<td>17.03.2006 0</td>
<td>19.06.2006 0</td>
<td>19.06.2006 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DW</td>
<td>17.03.2006 0</td>
<td>19.06.2006 0</td>
<td>19.06.2006 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DMR</td>
<td>17.03.2006 0</td>
<td>19.06.2006 0</td>
<td>19.06.2006 0</td>
</tr>
<tr>
<td>Projekt B</td>
<td>B3D5</td>
<td>ESP</td>
<td>11.10.2006 0</td>
<td>16.01.2006 0</td>
<td>16.01.2006 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DW</td>
<td>11.10.2006 0</td>
<td>16.01.2006 0</td>
<td>16.01.2006 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PPRM</td>
<td>11.10.2006 0</td>
<td>16.01.2006 0</td>
<td>16.01.2006 0</td>
</tr>
<tr>
<td>Projekt C</td>
<td>C886</td>
<td>ESP</td>
<td>16.08.2006 0</td>
<td>29.08.2006 0</td>
<td>29.08.2006 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DW</td>
<td>16.08.2006 0</td>
<td>29.08.2006 0</td>
<td>29.08.2006 0</td>
</tr>
</tbody>
</table>

Wert: aggregiert

Abweichung: niedriger Wert im DW um...

Höherer Wert im DW um...

55
F Widersprüche nach Regelprüfung von ERP und PPM

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>System</th>
<th>Regel 1</th>
<th>Regel 2</th>
<th>Regel 3</th>
<th>Regel 4</th>
<th>Regel 5</th>
<th>Regel 6</th>
<th>Regel 7</th>
<th>Regel 8</th>
<th>Regel 9</th>
<th>Regel 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT-Projektportfolio</td>
<td>IT</td>
<td>ERP</td>
<td></td>
</tr>
<tr>
<td>laufendes Projekt</td>
<td></td>
</tr>
<tr>
<td>Projekt A</td>
<td>A2C4</td>
<td>ERP</td>
<td></td>
</tr>
<tr>
<td>Teilprojekt 1</td>
<td>A2C4.</td>
<td>ERP</td>
<td></td>
</tr>
<tr>
<td>Arbeitspaket 1</td>
<td>A2C4.</td>
<td>ERP</td>
<td></td>
</tr>
<tr>
<td>Arbeitspaket 2</td>
<td>A2C4.</td>
<td>ERP</td>
<td></td>
</tr>
<tr>
<td>Teilprojekt 2</td>
<td>A2C4.</td>
<td>ERP</td>
<td></td>
</tr>
<tr>
<td>Arbeitspaket 1</td>
<td>A2C4.</td>
<td>ERP</td>
<td></td>
</tr>
<tr>
<td>abgeschlossenes Projekt</td>
<td></td>
</tr>
<tr>
<td>Projekt B</td>
<td>B3D5</td>
<td>ERP</td>
<td></td>
</tr>
<tr>
<td>Arbeitspaket 1</td>
<td>B3D5.</td>
<td>ERP</td>
<td></td>
</tr>
<tr>
<td>Arbeitspaket 2</td>
<td>B3D5.</td>
<td>ERP</td>
<td></td>
</tr>
<tr>
<td>Arbeitspaket 3</td>
<td>B3D5.</td>
<td>ERP</td>
<td></td>
</tr>
<tr>
<td>nicht begonnenes Projekt</td>
<td></td>
</tr>
<tr>
<td>Projekt C</td>
<td>C4E</td>
<td>ERP</td>
<td></td>
</tr>
<tr>
<td>Arbeitspaket 1</td>
<td>C4E</td>
<td>ERP</td>
<td></td>
</tr>
</tbody>
</table>

Anzahl Widersprüche

<table>
<thead>
<tr>
<th>System</th>
<th>2</th>
<th>2</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>3</th>
<th>2</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PPM</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Gesamt: 13

<table>
<thead>
<tr>
<th>Widerspruch</th>
<th>kein Widerspruch</th>
<th>Regel nicht anwendbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Abschließende Erklärung

Ich versichere hiermit, dass ich die vorliegende Studienarbeit selbständig, ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht.